{"title":"On a boundary property of Blaschke products","authors":"A. A. Danielyan, S. Pasias","doi":"10.1007/s10476-023-0212-8","DOIUrl":"10.1007/s10476-023-0212-8","url":null,"abstract":"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48911350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On limiting directions of entire solutions of complex differential-difference equations","authors":"H. X. Dai, J. Y. Qiao, T. B. Cao","doi":"10.1007/s10476-023-0213-7","DOIUrl":"10.1007/s10476-023-0213-7","url":null,"abstract":"<div><p>In this article, we mainly obtain the measure of Julia limiting directions and transcendental directions of Jackson difference operators of non-trivial transcendental entire solutions for differential-difference equation <span>({f^n}(z) + sumlimits_{k = 0}^n {{a_{{lambda _k}}}(z){p_{{lambda _k}}}(z,f) = h(z),} )</span> where <span>({p_{{lambda _k}}}(z,f),,,(lambda in mathbb{N}))</span> are distinct differential-difference monomials, <span>({a_{{lambda _k}}}(z))</span> are entire functions of growth smaller than that of the transcendental entire <i>h</i>(<i>z</i>). For non-trivial entire solutions <i>f</i> of differential-difference equation <span>({P_2}(z,f) + {A_1}(z){P_1}(z,f) + {A_0}(z) = 0,)</span> where <i>P</i><sub>λ</sub>(<i>z,f</i>)(λ = 1, 2) are differential-difference polynomials. By considering the entire coefficient associated with Petrenko’s deviation, the measure of common transcendental directions of classical difference operators and Jackson difference operators of <i>f</i> was studied.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0213-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42170562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uniform distribution of sequences and its interplay with functional analysis","authors":"S. K. Mercourakis, G. Vassiliadis","doi":"10.1007/s10476-023-0193-7","DOIUrl":"10.1007/s10476-023-0193-7","url":null,"abstract":"<div><p>In this paper we apply ideas from the theory of Uniform Distribution of sequences to Functional Analysis and then drawing inspiration from the consequent results, we study concepts and results in Uniform Distribution itself. so let <i>E</i> be a Banach space. then we prove:\u0000</p><ol>\u0000 <li>\u0000 <span>(a)</span>\u0000 \u0000 <p>If <i>F</i> is a bounded subset of <i>E</i> and <span>(x in overline {{rm{co}}} (F))</span> (= the closed convex hull of <i>F</i>), then there is a sequence (<i>x</i><sub><i>n</i></sub>) ⊆ <i>F</i> which is Cesàro summable to <i>x</i>.</p>\u0000 \u0000 </li>\u0000 <li>\u0000 <span>(b)</span>\u0000 \u0000 <p>If <i>E</i> is separable, <i>F</i> ⊆ <i>E</i>* bounded and <span>(f in {overline {{rm{co}}} ^{{w^ ast}}},(F))</span>, then there is a sequence (<i>f</i><sub><i>n</i></sub>) ⊆ <i>F</i> whose sequence of arithmetic means <span>({{{f_1} + cdots +{f_N}} over N})</span>, <i>N</i> ≥ 1 weak*-converges to <i>f</i>.</p>\u0000 \u0000 </li>\u0000 </ol><p>By the aid of the Krein-Milman theorem, both (a) and (b) have interesting implications for closed, convex and bounded subsets Ω of <i>E</i> such that <span>(Omega = overline {{rm{co}}} ({rm{ex}},Omega))</span> and for weak* compact and convex subsets of <i>E</i>*. Of particular interest is the case when Ω = <i>B</i><sub><i>C</i>(<i>K</i>)*</sub>, where <i>K</i> is a compact metric space.</p><p>By further expanding the previous ideas and results, we are able to generalize a classical theorem of Uniform Distribution which is valid for increasing functions φ: <i>I</i> =[0,1] → ℝ with φ(0) = 0 and φ(1) = 1, for functions φ of bounded variation on <i>I</i> with φ(0) = 0 and total variation <i>V</i><sub>0</sub><sup>1</sup>φ = 1.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0193-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42987735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mean Value Inequalities for the Digamma Function","authors":"H. Alzer, M. K. Kwong","doi":"10.1007/s10476-023-0206-6","DOIUrl":"10.1007/s10476-023-0206-6","url":null,"abstract":"<div><p>Let <i>ψ</i> be the digamma function and let <i>L</i>(<i>a,b</i>) = (<i>b</i> − <i>a</i>)/log(<i>b</i>/<i>a</i>) be the logarithmic mean of <i>a</i> and <i>b</i>. We prove that the inequality </p><div><div><span>$$left( * right),,,,,,,,,,,,{kern 1pt} left( {b - a} right)psi left( {sqrt {ab} } right) < left( {Lleft( {a,b} right) - a} right)psi left( a right) + left( {b - Lleft( {a,b} right)} right)psi left( b right)$$</span></div></div><p> holds for all real numbers <i>a</i> and <i>b</i> with <i>b</i> > <i>a</i> ≥ <i>α</i><sub>0</sub>. Here, <i>α</i><sub>0</sub> ≈ 0.56155 is the only positive solution of </p><div><div><span>$$5{psi ^prime }left( x right) + 3x{psi ^{prime prime }}left( x right) = 0.$$</span></div></div><p> The constant lower bound <i>α</i><sub>0</sub> is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for <i>b</i> > <i>a</i> ≥ 2. Moreover, we prove that the following companion to (*) holds for all <i>a</i> and <i>b</i> with <i>b</i> > <i>a</i> > 0, </p><div><div><span>$$left( {Lleft( {a,b} right) - a} right)psi left( a right) + left( {b - Lleft( {a,b} right)} right)psi left( b right) < left( {b - a} right)psi left( {{{a + b} over 2}} right).$$</span></div></div></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45197006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral eigenmatrix of the planar spectral measures with four elements","authors":"S.-J. Li, W.-H. Ai","doi":"10.1007/s10476-023-0207-5","DOIUrl":"10.1007/s10476-023-0207-5","url":null,"abstract":"<div><p>We consider the spectral eigenmatrix problem of the planar self-similar spectral measures <i>μ</i><sub><i>Q,D</i></sub> generated by </p><div><div><span>$$Q = left({matrix{{2q} & 0 cr 0 & {2q} cr}} right),,,{rm{and}},,,D = left{{left({matrix{0 cr 0 cr}} right),left({matrix{1 cr 0 cr}} right),left({matrix{0 cr 1 cr}} right),left({matrix{{- 1} cr {- 1} cr}} right)} right},$$</span></div></div><p> where <i>q</i> ≥ 2 is an integer. For matrix <i>R</i> ∈ <i>M</i><sub>2</sub>(ℤ), we prove that there exist some spectrum Λ such that Λ and <i>R</i>Λ are both the spectra of <i>μ</i><sub><i>Q,D</i></sub> if and only if det <i>R</i> ∈ 2ℤ + 1.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0207-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43753667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A decay estimate for the Fourier transform of certain singular measures in ℝ4 and applications","authors":"T. Godoy, P. Rocha","doi":"10.1007/s10476-023-0208-4","DOIUrl":"10.1007/s10476-023-0208-4","url":null,"abstract":"<div><p>We consider, for a class of functions <i>φ</i>: ℝ<sup>2</sup> {<b>0</b>} → ℝ<sup>2</sup> satisfying a nonisotropic homogeneity condition, the Fourier transform <i>û</i> of the Borel measure on ℝ<sup>4</sup> defined by </p><div><div><span>$$mu left(E right) = int_U {{chi E}left({x,varphi left(x right)} right)} ,dx$$</span></div></div><p> where <i>E</i> is a Borel set of ℝ<sup>4</sup> and <span>(U = left{{left({{t^{{alpha _1}}},{t^{{alpha _2}}}s} right):c < s < d,,,0 < t < 1} right})</span>. The aim of this article is to give a decay estimate for <i>û</i> for the case where the set of nonelliptic points of <i>φ</i> is a curve in <span>(overline U backslash left{{bf{0}} right})</span>. From this estimate we obtain a restriction theorem for the usual Fourier transform to the graph of <i>φ</i>∣<sub><i>U</i></sub>: <i>U</i> → ℝ<sup>2</sup>. We also give <i>L</i><sup><i>p</i></sup>-improving properties for the convolution operator <i>T</i><sub><i>μ</i></sub><i>f</i> = <i>μ</i> * <i>f</i>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0208-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46613759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A particular family of absolutely monotone functions and relations to branching processes","authors":"M. Möhle","doi":"10.1007/s10476-023-0211-9","DOIUrl":"10.1007/s10476-023-0211-9","url":null,"abstract":"<div><p>It is shown that the map <i>z</i> ↦ log(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>)) is absolutely monotone on [0, 1) if and only if <i>c</i> ≥ 1. The proof is based on an integral representation for the associated Taylor coefficients and on one of Gautschi’s double inequalities for the quotient of two gamma functions. The result is used to verify that, for every <i>c</i> ≥ 1 and <i>α</i> ∈ (0, 1], the map <i>z</i> ↦ 1 − exp(<i>c</i> − <i>c</i>(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>))<sup><i>α</i></sup>) is absolutely monotone on [0, 1). The proof exploits a continuous-time discrete state space branching process.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46990179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the order and the type of an entire function","authors":"E. Kallitsi, V. G. Papanicolaou, G. Smyrlis","doi":"10.1007/s10476-023-0210-x","DOIUrl":"10.1007/s10476-023-0210-x","url":null,"abstract":"<div><p>In this short article we present some properties regarding the order and the type of an entire function.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0210-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42812157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inverse-closedness of the subalgebra of locally nuclear operators","authors":"E. Yu. Guseva, V. G. Kurbatov","doi":"10.1007/s10476-023-0194-6","DOIUrl":"10.1007/s10476-023-0194-6","url":null,"abstract":"<div><p>Let <i>X</i> be a Banach space and <i>T</i> be a bounded linear operator acting in <i>l</i><sub><i>p</i></sub>(ℤ<sup><i>c</i></sup>,<i>X</i>), 1 ≤ <i>p</i> ≤ ∞. The operator <i>T</i> is called <i>locally nuclear</i> if it can be represented in the form </p><div><div><span>$${(Tx)_k} = sumlimits_{m in {mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},quad k in {mathbb{Z}^c},$$</span></div></div><p> where <i>b</i><sub><i>km</i></sub>: <i>X</i> → <i>X</i> are nuclear, </p><div><div><span>$${left| {{b_{km}}} right|_{{mathfrak{S}_1}}} le {beta _m},quad k,m in {mathbb{Z}^c},$$</span></div></div><p><span>(left|cdotright|{_{{mathfrak{S}_1}}})</span> is the nuclear norm, <i>β</i> ∈ <i>l</i><sub>1</sub>(ℤ<sup><i>c</i></sup>,ℂ) or <i>β</i> ∈ <i>l</i><sub>1,<i>g</i></sub>(ℤ<sup><i>c</i></sup>,ℂ), and <i>g</i> is an appropriate weight on ℤ<sup><i>c</i></sup>. It is established that if <i>T</i> is locally nuclear and the operator 1 + <i>T</i> is invertible, then the inverse operator (1 + <i>T</i>)<sup>−1</sup> has the form 1 + <i>T</i><sub>1</sub>, where <i>T</i><sub>1</sub> is also locally nuclear. This result is refined for the case of operators acting in <i>L</i><sub><i>p</i></sub> (ℝ<sup><i>c</i></sup>,ℂ).</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0194-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48111917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Double Layer Potential Operator on Hardy Spaces","authors":"Y. Komori-Furuya","doi":"10.1007/s10476-023-0202-x","DOIUrl":"10.1007/s10476-023-0202-x","url":null,"abstract":"<div><p>Many studies have been done for one-dimensional Cauchy integral operator. We consider <i>n</i>-dimensional Cauchy integral operator for hypersurface, or we say, the double layer potential operator, and obtain the boundedness from <i>H</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) to <i>h</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) (local Hardy space). For the proof we introduce Clifford valued Hardy spaces.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45232859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}