Analysis Mathematica最新文献

筛选
英文 中文
On a boundary property of Blaschke products 关于Blaschke乘积的一个边界性质
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-03-31 DOI: 10.1007/s10476-023-0212-8
A. A. Danielyan, S. Pasias
{"title":"On a boundary property of Blaschke products","authors":"A. A. Danielyan,&nbsp;S. Pasias","doi":"10.1007/s10476-023-0212-8","DOIUrl":"10.1007/s10476-023-0212-8","url":null,"abstract":"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48911350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On limiting directions of entire solutions of complex differential-difference equations 关于复微分差分方程整体解的极限方向
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-03-31 DOI: 10.1007/s10476-023-0213-7
H. X. Dai, J. Y. Qiao, T. B. Cao
{"title":"On limiting directions of entire solutions of complex differential-difference equations","authors":"H. X. Dai,&nbsp;J. Y. Qiao,&nbsp;T. B. Cao","doi":"10.1007/s10476-023-0213-7","DOIUrl":"10.1007/s10476-023-0213-7","url":null,"abstract":"<div><p>In this article, we mainly obtain the measure of Julia limiting directions and transcendental directions of Jackson difference operators of non-trivial transcendental entire solutions for differential-difference equation <span>({f^n}(z) + sumlimits_{k = 0}^n {{a_{{lambda _k}}}(z){p_{{lambda _k}}}(z,f) = h(z),} )</span> where <span>({p_{{lambda _k}}}(z,f),,,(lambda in mathbb{N}))</span> are distinct differential-difference monomials, <span>({a_{{lambda _k}}}(z))</span> are entire functions of growth smaller than that of the transcendental entire <i>h</i>(<i>z</i>). For non-trivial entire solutions <i>f</i> of differential-difference equation <span>({P_2}(z,f) + {A_1}(z){P_1}(z,f) + {A_0}(z) = 0,)</span> where <i>P</i><sub>λ</sub>(<i>z,f</i>)(λ = 1, 2) are differential-difference polynomials. By considering the entire coefficient associated with Petrenko’s deviation, the measure of common transcendental directions of classical difference operators and Jackson difference operators of <i>f</i> was studied.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0213-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42170562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Uniform distribution of sequences and its interplay with functional analysis 序列的均匀分布及其与泛函分析的相互作用
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-03-31 DOI: 10.1007/s10476-023-0193-7
S. K. Mercourakis, G. Vassiliadis
{"title":"Uniform distribution of sequences and its interplay with functional analysis","authors":"S. K. Mercourakis,&nbsp;G. Vassiliadis","doi":"10.1007/s10476-023-0193-7","DOIUrl":"10.1007/s10476-023-0193-7","url":null,"abstract":"<div><p>In this paper we apply ideas from the theory of Uniform Distribution of sequences to Functional Analysis and then drawing inspiration from the consequent results, we study concepts and results in Uniform Distribution itself. so let <i>E</i> be a Banach space. then we prove:\u0000</p><ol>\u0000 <li>\u0000 <span>(a)</span>\u0000 \u0000 <p>If <i>F</i> is a bounded subset of <i>E</i> and <span>(x in overline {{rm{co}}} (F))</span> (= the closed convex hull of <i>F</i>), then there is a sequence (<i>x</i><sub><i>n</i></sub>) ⊆ <i>F</i> which is Cesàro summable to <i>x</i>.</p>\u0000 \u0000 </li>\u0000 <li>\u0000 <span>(b)</span>\u0000 \u0000 <p>If <i>E</i> is separable, <i>F</i> ⊆ <i>E</i>* bounded and <span>(f in {overline {{rm{co}}} ^{{w^ ast}}},(F))</span>, then there is a sequence (<i>f</i><sub><i>n</i></sub>) ⊆ <i>F</i> whose sequence of arithmetic means <span>({{{f_1} + cdots +{f_N}} over N})</span>, <i>N</i> ≥ 1 weak*-converges to <i>f</i>.</p>\u0000 \u0000 </li>\u0000 </ol><p>By the aid of the Krein-Milman theorem, both (a) and (b) have interesting implications for closed, convex and bounded subsets Ω of <i>E</i> such that <span>(Omega = overline {{rm{co}}} ({rm{ex}},Omega))</span> and for weak* compact and convex subsets of <i>E</i>*. Of particular interest is the case when Ω = <i>B</i><sub><i>C</i>(<i>K</i>)*</sub>, where <i>K</i> is a compact metric space.</p><p>By further expanding the previous ideas and results, we are able to generalize a classical theorem of Uniform Distribution which is valid for increasing functions φ: <i>I</i> =[0,1] → ℝ with φ(0) = 0 and φ(1) = 1, for functions φ of bounded variation on <i>I</i> with φ(0) = 0 and total variation <i>V</i><sub>0</sub><sup>1</sup>φ = 1.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0193-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42987735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mean Value Inequalities for the Digamma Function 二函数的均值不等式
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-03-01 DOI: 10.1007/s10476-023-0206-6
H. Alzer, M. K. Kwong
{"title":"Mean Value Inequalities for the Digamma Function","authors":"H. Alzer,&nbsp;M. K. Kwong","doi":"10.1007/s10476-023-0206-6","DOIUrl":"10.1007/s10476-023-0206-6","url":null,"abstract":"<div><p>Let <i>ψ</i> be the digamma function and let <i>L</i>(<i>a,b</i>) = (<i>b</i> − <i>a</i>)/log(<i>b</i>/<i>a</i>) be the logarithmic mean of <i>a</i> and <i>b</i>. We prove that the inequality </p><div><div><span>$$left( * right),,,,,,,,,,,,{kern 1pt} left( {b - a} right)psi left( {sqrt {ab} } right) &lt; left( {Lleft( {a,b} right) - a} right)psi left( a right) + left( {b - Lleft( {a,b} right)} right)psi left( b right)$$</span></div></div><p> holds for all real numbers <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> ≥ <i>α</i><sub>0</sub>. Here, <i>α</i><sub>0</sub> ≈ 0.56155 is the only positive solution of </p><div><div><span>$$5{psi ^prime }left( x right) + 3x{psi ^{prime prime }}left( x right) = 0.$$</span></div></div><p> The constant lower bound <i>α</i><sub>0</sub> is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for <i>b</i> &gt; <i>a</i> ≥ 2. Moreover, we prove that the following companion to (*) holds for all <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> &gt; 0, </p><div><div><span>$$left( {Lleft( {a,b} right) - a} right)psi left( a right) + left( {b - Lleft( {a,b} right)} right)psi left( b right) &lt; left( {b - a} right)psi left( {{{a + b} over 2}} right).$$</span></div></div></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45197006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral eigenmatrix of the planar spectral measures with four elements 四元平面光谱测度的光谱特征矩阵
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-02-28 DOI: 10.1007/s10476-023-0207-5
S.-J. Li, W.-H. Ai
{"title":"Spectral eigenmatrix of the planar spectral measures with four elements","authors":"S.-J. Li,&nbsp;W.-H. Ai","doi":"10.1007/s10476-023-0207-5","DOIUrl":"10.1007/s10476-023-0207-5","url":null,"abstract":"<div><p>We consider the spectral eigenmatrix problem of the planar self-similar spectral measures <i>μ</i><sub><i>Q,D</i></sub> generated by </p><div><div><span>$$Q = left({matrix{{2q} &amp; 0 cr 0 &amp; {2q} cr}} right),,,{rm{and}},,,D = left{{left({matrix{0 cr 0 cr}} right),left({matrix{1 cr 0 cr}} right),left({matrix{0 cr 1 cr}} right),left({matrix{{- 1} cr {- 1} cr}} right)} right},$$</span></div></div><p> where <i>q</i> ≥ 2 is an integer. For matrix <i>R</i> ∈ <i>M</i><sub>2</sub>(ℤ), we prove that there exist some spectrum Λ such that Λ and <i>R</i>Λ are both the spectra of <i>μ</i><sub><i>Q,D</i></sub> if and only if det <i>R</i> ∈ 2ℤ + 1.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0207-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43753667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A decay estimate for the Fourier transform of certain singular measures in ℝ4 and applications 中某些奇异测度的傅立叶变换的衰变估计ℝ4及其应用
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-02-28 DOI: 10.1007/s10476-023-0208-4
T. Godoy, P. Rocha
{"title":"A decay estimate for the Fourier transform of certain singular measures in ℝ4 and applications","authors":"T. Godoy,&nbsp;P. Rocha","doi":"10.1007/s10476-023-0208-4","DOIUrl":"10.1007/s10476-023-0208-4","url":null,"abstract":"<div><p>We consider, for a class of functions <i>φ</i>: ℝ<sup>2</sup> {<b>0</b>} → ℝ<sup>2</sup> satisfying a nonisotropic homogeneity condition, the Fourier transform <i>û</i> of the Borel measure on ℝ<sup>4</sup> defined by </p><div><div><span>$$mu left(E right) = int_U {{chi E}left({x,varphi left(x right)} right)} ,dx$$</span></div></div><p> where <i>E</i> is a Borel set of ℝ<sup>4</sup> and <span>(U = left{{left({{t^{{alpha _1}}},{t^{{alpha _2}}}s} right):c &lt; s &lt; d,,,0 &lt; t &lt; 1} right})</span>. The aim of this article is to give a decay estimate for <i>û</i> for the case where the set of nonelliptic points of <i>φ</i> is a curve in <span>(overline U backslash left{{bf{0}} right})</span>. From this estimate we obtain a restriction theorem for the usual Fourier transform to the graph of <i>φ</i>∣<sub><i>U</i></sub>: <i>U</i> → ℝ<sup>2</sup>. We also give <i>L</i><sup><i>p</i></sup>-improving properties for the convolution operator <i>T</i><sub><i>μ</i></sub><i>f</i> = <i>μ</i> * <i>f</i>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0208-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46613759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A particular family of absolutely monotone functions and relations to branching processes 一类特殊的绝对单调函数及其与分支过程的关系
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-02-28 DOI: 10.1007/s10476-023-0211-9
M. Möhle
{"title":"A particular family of absolutely monotone functions and relations to branching processes","authors":"M. Möhle","doi":"10.1007/s10476-023-0211-9","DOIUrl":"10.1007/s10476-023-0211-9","url":null,"abstract":"<div><p>It is shown that the map <i>z</i> ↦ log(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>)) is absolutely monotone on [0, 1) if and only if <i>c</i> ≥ 1. The proof is based on an integral representation for the associated Taylor coefficients and on one of Gautschi’s double inequalities for the quotient of two gamma functions. The result is used to verify that, for every <i>c</i> ≥ 1 and <i>α</i> ∈ (0, 1], the map <i>z</i> ↦ 1 − exp(<i>c</i> − <i>c</i>(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>))<sup><i>α</i></sup>) is absolutely monotone on [0, 1). The proof exploits a continuous-time discrete state space branching process.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46990179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the order and the type of an entire function 关于整个函数的阶数和类型
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-02-28 DOI: 10.1007/s10476-023-0210-x
E. Kallitsi, V. G. Papanicolaou, G. Smyrlis
{"title":"On the order and the type of an entire function","authors":"E. Kallitsi,&nbsp;V. G. Papanicolaou,&nbsp;G. Smyrlis","doi":"10.1007/s10476-023-0210-x","DOIUrl":"10.1007/s10476-023-0210-x","url":null,"abstract":"<div><p>In this short article we present some properties regarding the order and the type of an entire function.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0210-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42812157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse-closedness of the subalgebra of locally nuclear operators 局部核算子子代数的逆闭性
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-02-28 DOI: 10.1007/s10476-023-0194-6
E. Yu. Guseva, V. G. Kurbatov
{"title":"Inverse-closedness of the subalgebra of locally nuclear operators","authors":"E. Yu. Guseva,&nbsp;V. G. Kurbatov","doi":"10.1007/s10476-023-0194-6","DOIUrl":"10.1007/s10476-023-0194-6","url":null,"abstract":"<div><p>Let <i>X</i> be a Banach space and <i>T</i> be a bounded linear operator acting in <i>l</i><sub><i>p</i></sub>(ℤ<sup><i>c</i></sup>,<i>X</i>), 1 ≤ <i>p</i> ≤ ∞. The operator <i>T</i> is called <i>locally nuclear</i> if it can be represented in the form </p><div><div><span>$${(Tx)_k} = sumlimits_{m in {mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},quad k in {mathbb{Z}^c},$$</span></div></div><p> where <i>b</i><sub><i>km</i></sub>: <i>X</i> → <i>X</i> are nuclear, </p><div><div><span>$${left| {{b_{km}}} right|_{{mathfrak{S}_1}}} le {beta _m},quad k,m in {mathbb{Z}^c},$$</span></div></div><p><span>(left|cdotright|{_{{mathfrak{S}_1}}})</span> is the nuclear norm, <i>β</i> ∈ <i>l</i><sub>1</sub>(ℤ<sup><i>c</i></sup>,ℂ) or <i>β</i> ∈ <i>l</i><sub>1,<i>g</i></sub>(ℤ<sup><i>c</i></sup>,ℂ), and <i>g</i> is an appropriate weight on ℤ<sup><i>c</i></sup>. It is established that if <i>T</i> is locally nuclear and the operator 1 + <i>T</i> is invertible, then the inverse operator (1 + <i>T</i>)<sup>−1</sup> has the form 1 + <i>T</i><sub>1</sub>, where <i>T</i><sub>1</sub> is also locally nuclear. This result is refined for the case of operators acting in <i>L</i><sub><i>p</i></sub> (ℝ<sup><i>c</i></sup>,ℂ).</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0194-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48111917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Double Layer Potential Operator on Hardy Spaces Hardy空间上的双层势算子
IF 0.7 3区 数学
Analysis Mathematica Pub Date : 2023-02-08 DOI: 10.1007/s10476-023-0202-x
Y. Komori-Furuya
{"title":"The Double Layer Potential Operator on Hardy Spaces","authors":"Y. Komori-Furuya","doi":"10.1007/s10476-023-0202-x","DOIUrl":"10.1007/s10476-023-0202-x","url":null,"abstract":"<div><p>Many studies have been done for one-dimensional Cauchy integral operator. We consider <i>n</i>-dimensional Cauchy integral operator for hypersurface, or we say, the double layer potential operator, and obtain the boundedness from <i>H</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) to <i>h</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) (local Hardy space). For the proof we introduce Clifford valued Hardy spaces.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45232859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信