函数微积分下\({\cal A}{\cl N}\)-算子的稳定性

Pub Date : 2023-09-06 DOI:10.1007/s10476-023-0231-5
G. Ramesh, H. Osaka, Y. Udagawa, T. Yamazaki
{"title":"函数微积分下\\({\\cal A}{\\cl N}\\)-算子的稳定性","authors":"G. Ramesh,&nbsp;H. Osaka,&nbsp;Y. Udagawa,&nbsp;T. Yamazaki","doi":"10.1007/s10476-023-0231-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we discuss absolutely norm attaining property (<span>\\({\\cal A}{\\cal N}\\)</span>-property in short) of the Jordan product and Lie-bracket. We propose a functional calculus for positive absolutely norm attaining operators and discuss the stability of the <span>\\({\\cal A}{\\cal N}\\)</span>-property under the functional calculus. As a consequence we discuss the operator mean of positive <span>\\({\\cal A}{\\cal N}\\)</span>-operators.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0231-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability of \\\\({\\\\cal A}{\\\\cal N}\\\\)-Operators under Functional Calculus\",\"authors\":\"G. Ramesh,&nbsp;H. Osaka,&nbsp;Y. Udagawa,&nbsp;T. Yamazaki\",\"doi\":\"10.1007/s10476-023-0231-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we discuss absolutely norm attaining property (<span>\\\\({\\\\cal A}{\\\\cal N}\\\\)</span>-property in short) of the Jordan product and Lie-bracket. We propose a functional calculus for positive absolutely norm attaining operators and discuss the stability of the <span>\\\\({\\\\cal A}{\\\\cal N}\\\\)</span>-property under the functional calculus. As a consequence we discuss the operator mean of positive <span>\\\\({\\\\cal A}{\\\\cal N}\\\\)</span>-operators.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0231-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0231-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0231-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个注记中,我们讨论了Jordan乘积和李括号的绝对范数获得性质(\({\cal A}{\cl N}\)-简言之性质)。我们提出了一个正绝对范数实现算子的函数演算,并讨论了函数演算下\({\cal a}{\cl N})-性质的稳定性。因此,我们讨论了正算子的算子均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability of \({\cal A}{\cal N}\)-Operators under Functional Calculus

In this note we discuss absolutely norm attaining property (\({\cal A}{\cal N}\)-property in short) of the Jordan product and Lie-bracket. We propose a functional calculus for positive absolutely norm attaining operators and discuss the stability of the \({\cal A}{\cal N}\)-property under the functional calculus. As a consequence we discuss the operator mean of positive \({\cal A}{\cal N}\)-operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信