Projectivity of Some Banach Right Modules over the Group Algebra ℓ1(G)

Pub Date : 2023-09-06 DOI:10.1007/s10476-023-0234-2
S. Soltani Renani, Z. Yari
{"title":"Projectivity of Some Banach Right Modules over the Group Algebra ℓ1(G)","authors":"S. Soltani Renani,&nbsp;Z. Yari","doi":"10.1007/s10476-023-0234-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a locally compact group, <span>\\({\\cal B}({L^2}(G))\\)</span> be the space of all bounded linear operators on <i>L</i><sup>2</sup>(<i>G</i>), and <span>\\(({\\cal T}({L^2}(G)), \\ast)\\)</span> be the Banach algebra of trace class operators on <i>L</i><sup>2</sup>(<i>G</i>). In this paper, we focus on some Banach right submodules of <span>\\({\\cal B}({L^2}(G))\\)</span> over the convolution algebras <span>\\(({\\cal T}({L^2}(G)), \\ast)\\)</span> and (<i>L</i><sup>1</sup>(<i>G</i>),*). We will see that if the locally compact group <i>G</i> is discrete, then the Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-module structures of them are derived from their Banach right <span>\\({\\cal T}({\\ell ^2}(G))\\)</span>-module structures. We also study the projectivity of these Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-modules.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0234-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a locally compact group, \({\cal B}({L^2}(G))\) be the space of all bounded linear operators on L2(G), and \(({\cal T}({L^2}(G)), \ast)\) be the Banach algebra of trace class operators on L2(G). In this paper, we focus on some Banach right submodules of \({\cal B}({L^2}(G))\) over the convolution algebras \(({\cal T}({L^2}(G)), \ast)\) and (L1(G),*). We will see that if the locally compact group G is discrete, then the Banach right 1(G)-module structures of them are derived from their Banach right \({\cal T}({\ell ^2}(G))\)-module structures. We also study the projectivity of these Banach right 1(G)-modules.

分享
查看原文
群代数上某些Banach右模的射影性ℓ1(G)
设G是一个局部紧群,\({\cal B}({L^2}(G))\)是L2(G)上所有有界线性算子的空间,\({\cal T}(}L^2}(G),\ast))是L2上迹类算子的Banach代数。本文研究了卷积代数(({\cal T}({L^2}(G)),ast)和(L1(G),*)上的一些Banach右子模。我们将看到,如果局部紧致群G是离散的,那么Banach右ℓ它们的1(G)-模结构是从它们的Banach右({\cal T}({\ell^2}(G))-模构造导出的。我们还研究了这些Banach权的投影性ℓ1(G)-模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信