Projectivity of Some Banach Right Modules over the Group Algebra ℓ1(G)

IF 0.6 3区 数学 Q3 MATHEMATICS
S. Soltani Renani, Z. Yari
{"title":"Projectivity of Some Banach Right Modules over the Group Algebra ℓ1(G)","authors":"S. Soltani Renani,&nbsp;Z. Yari","doi":"10.1007/s10476-023-0234-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a locally compact group, <span>\\({\\cal B}({L^2}(G))\\)</span> be the space of all bounded linear operators on <i>L</i><sup>2</sup>(<i>G</i>), and <span>\\(({\\cal T}({L^2}(G)), \\ast)\\)</span> be the Banach algebra of trace class operators on <i>L</i><sup>2</sup>(<i>G</i>). In this paper, we focus on some Banach right submodules of <span>\\({\\cal B}({L^2}(G))\\)</span> over the convolution algebras <span>\\(({\\cal T}({L^2}(G)), \\ast)\\)</span> and (<i>L</i><sup>1</sup>(<i>G</i>),*). We will see that if the locally compact group <i>G</i> is discrete, then the Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-module structures of them are derived from their Banach right <span>\\({\\cal T}({\\ell ^2}(G))\\)</span>-module structures. We also study the projectivity of these Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-modules.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 3","pages":"881 - 890"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0234-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a locally compact group, \({\cal B}({L^2}(G))\) be the space of all bounded linear operators on L2(G), and \(({\cal T}({L^2}(G)), \ast)\) be the Banach algebra of trace class operators on L2(G). In this paper, we focus on some Banach right submodules of \({\cal B}({L^2}(G))\) over the convolution algebras \(({\cal T}({L^2}(G)), \ast)\) and (L1(G),*). We will see that if the locally compact group G is discrete, then the Banach right 1(G)-module structures of them are derived from their Banach right \({\cal T}({\ell ^2}(G))\)-module structures. We also study the projectivity of these Banach right 1(G)-modules.

群代数上某些Banach右模的射影性ℓ1(G)
设G是一个局部紧群,\({\cal B}({L^2}(G))\)是L2(G)上所有有界线性算子的空间,\({\cal T}(}L^2}(G),\ast))是L2上迹类算子的Banach代数。本文研究了卷积代数(({\cal T}({L^2}(G)),ast)和(L1(G),*)上的一些Banach右子模。我们将看到,如果局部紧致群G是离散的,那么Banach右ℓ它们的1(G)-模结构是从它们的Banach右({\cal T}({\ell^2}(G))-模构造导出的。我们还研究了这些Banach权的投影性ℓ1(G)-模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信