{"title":"具有有界密度谱的欧氏空间上的傅立叶拟晶及其分布","authors":"S. Yu. Favorov","doi":"10.1007/s10476-023-0228-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider temperate distributions on Euclidean spaces with uniformly discrete support and locally finite spectrum. We find conditions on coefficients of distributions under which they are finite sums of derivatives of generalized lattice Dirac combs. These theorems are derived from properties of families of discretely supported measures and almost periodic distributions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0228-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Fourier Quasicrystals and Distributions on Euclidean Spaces with Spectrum of Bounded Density\",\"authors\":\"S. Yu. Favorov\",\"doi\":\"10.1007/s10476-023-0228-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider temperate distributions on Euclidean spaces with uniformly discrete support and locally finite spectrum. We find conditions on coefficients of distributions under which they are finite sums of derivatives of generalized lattice Dirac combs. These theorems are derived from properties of families of discretely supported measures and almost periodic distributions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0228-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0228-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0228-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fourier Quasicrystals and Distributions on Euclidean Spaces with Spectrum of Bounded Density
We consider temperate distributions on Euclidean spaces with uniformly discrete support and locally finite spectrum. We find conditions on coefficients of distributions under which they are finite sums of derivatives of generalized lattice Dirac combs. These theorems are derived from properties of families of discretely supported measures and almost periodic distributions.