{"title":"群代数上某些Banach右模的射影性ℓ1(G)","authors":"S. Soltani Renani, Z. Yari","doi":"10.1007/s10476-023-0234-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a locally compact group, <span>\\({\\cal B}({L^2}(G))\\)</span> be the space of all bounded linear operators on <i>L</i><sup>2</sup>(<i>G</i>), and <span>\\(({\\cal T}({L^2}(G)), \\ast)\\)</span> be the Banach algebra of trace class operators on <i>L</i><sup>2</sup>(<i>G</i>). In this paper, we focus on some Banach right submodules of <span>\\({\\cal B}({L^2}(G))\\)</span> over the convolution algebras <span>\\(({\\cal T}({L^2}(G)), \\ast)\\)</span> and (<i>L</i><sup>1</sup>(<i>G</i>),*). We will see that if the locally compact group <i>G</i> is discrete, then the Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-module structures of them are derived from their Banach right <span>\\({\\cal T}({\\ell ^2}(G))\\)</span>-module structures. We also study the projectivity of these Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-modules.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projectivity of Some Banach Right Modules over the Group Algebra ℓ1(G)\",\"authors\":\"S. Soltani Renani, Z. Yari\",\"doi\":\"10.1007/s10476-023-0234-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a locally compact group, <span>\\\\({\\\\cal B}({L^2}(G))\\\\)</span> be the space of all bounded linear operators on <i>L</i><sup>2</sup>(<i>G</i>), and <span>\\\\(({\\\\cal T}({L^2}(G)), \\\\ast)\\\\)</span> be the Banach algebra of trace class operators on <i>L</i><sup>2</sup>(<i>G</i>). In this paper, we focus on some Banach right submodules of <span>\\\\({\\\\cal B}({L^2}(G))\\\\)</span> over the convolution algebras <span>\\\\(({\\\\cal T}({L^2}(G)), \\\\ast)\\\\)</span> and (<i>L</i><sup>1</sup>(<i>G</i>),*). We will see that if the locally compact group <i>G</i> is discrete, then the Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-module structures of them are derived from their Banach right <span>\\\\({\\\\cal T}({\\\\ell ^2}(G))\\\\)</span>-module structures. We also study the projectivity of these Banach right <i>ℓ</i><sup>1</sup>(<i>G</i>)-modules.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0234-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0234-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Projectivity of Some Banach Right Modules over the Group Algebra ℓ1(G)
Let G be a locally compact group, \({\cal B}({L^2}(G))\) be the space of all bounded linear operators on L2(G), and \(({\cal T}({L^2}(G)), \ast)\) be the Banach algebra of trace class operators on L2(G). In this paper, we focus on some Banach right submodules of \({\cal B}({L^2}(G))\) over the convolution algebras \(({\cal T}({L^2}(G)), \ast)\) and (L1(G),*). We will see that if the locally compact group G is discrete, then the Banach right ℓ1(G)-module structures of them are derived from their Banach right \({\cal T}({\ell ^2}(G))\)-module structures. We also study the projectivity of these Banach right ℓ1(G)-modules.