关于非线性复微分方程的亚纯解

Pub Date : 2023-09-06 DOI:10.1007/s10476-023-0225-3
J.-F. Chen, Y.-Y. Feng
{"title":"关于非线性复微分方程的亚纯解","authors":"J.-F. Chen,&nbsp;Y.-Y. Feng","doi":"10.1007/s10476-023-0225-3","DOIUrl":null,"url":null,"abstract":"<div><p>By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form </p><div><div><span>$${f^n}{f^\\prime } + P(z,f,{f^\\prime }, \\ldots ,{f^{(t)}}) = {P_1}{e^{{\\alpha _1}z}} + {P_2}{e^{{\\alpha _2}z}} + \\cdots + {P_m}{e^{{\\alpha _m}z}},$$</span></div></div><p> where <i>n</i> ≥ 3, <i>t</i> ≥ 0 and <i>m</i> ≥ 1 are integers, <i>n</i> ≥ <i>m, P</i>(<i>z, f, f′, …, f</i><sup>(<i>t</i>)</sup>) is a differential polynomial in <i>f</i> (<i>z</i>) of degree <i>d</i> ≤ <i>n</i> with small functions of <i>f</i> (<i>z</i>) as its coefficients, and α<sub><i>j</i></sub>, <i>P</i><sub><i>j</i></sub> (<i>j</i> = 1, 2, …, <i>m</i>) are nonzero constants such that ∣α<sub>1</sub>∣ &gt; ∣α<sub>2</sub>∣ &gt; … &gt; ∣α<sub><i>m</i></sub>∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0225-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On Meromorphic Solutions of Nonlinear Complex Differential Equations\",\"authors\":\"J.-F. Chen,&nbsp;Y.-Y. Feng\",\"doi\":\"10.1007/s10476-023-0225-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form </p><div><div><span>$${f^n}{f^\\\\prime } + P(z,f,{f^\\\\prime }, \\\\ldots ,{f^{(t)}}) = {P_1}{e^{{\\\\alpha _1}z}} + {P_2}{e^{{\\\\alpha _2}z}} + \\\\cdots + {P_m}{e^{{\\\\alpha _m}z}},$$</span></div></div><p> where <i>n</i> ≥ 3, <i>t</i> ≥ 0 and <i>m</i> ≥ 1 are integers, <i>n</i> ≥ <i>m, P</i>(<i>z, f, f′, …, f</i><sup>(<i>t</i>)</sup>) is a differential polynomial in <i>f</i> (<i>z</i>) of degree <i>d</i> ≤ <i>n</i> with small functions of <i>f</i> (<i>z</i>) as its coefficients, and α<sub><i>j</i></sub>, <i>P</i><sub><i>j</i></sub> (<i>j</i> = 1, 2, …, <i>m</i>) are nonzero constants such that ∣α<sub>1</sub>∣ &gt; ∣α<sub>2</sub>∣ &gt; … &gt; ∣α<sub><i>m</i></sub>∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0225-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0225-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0225-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用亚纯函数的Nevanlinna理论,我们刻画了形式为$${f^n}{f^\prime}+P(z,f,{f^\prime},\ldots,{f^(t)})={P_1}{e^{\alpha_1}z}+{P_2}{e^{\alpha_2}z}}+\cdots+{P_m}{e^{[alpha_m}z}},$$的非线性微分方程的亚纯解,其中n≥3,t≥0和m≥1是整数,n≥m,P(z,f,f′,…,f(t))是f(z)中d≤n次的微分多项式,其系数为f(zα2Ş>>;⑪αmŞ。此外,我们还提供了上述方程解的具体形式,并举例说明了我们结果的清晰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Meromorphic Solutions of Nonlinear Complex Differential Equations

By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form

$${f^n}{f^\prime } + P(z,f,{f^\prime }, \ldots ,{f^{(t)}}) = {P_1}{e^{{\alpha _1}z}} + {P_2}{e^{{\alpha _2}z}} + \cdots + {P_m}{e^{{\alpha _m}z}},$$

where n ≥ 3, t ≥ 0 and m ≥ 1 are integers, nm, P(z, f, f′, …, f(t)) is a differential polynomial in f (z) of degree dn with small functions of f (z) as its coefficients, and αj, Pj (j = 1, 2, …, m) are nonzero constants such that ∣α1∣ > ∣α2∣ > … > ∣αm∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信