{"title":"关于与Schrödinger算子相关的换向子振荡和变分的加权紧性","authors":"A. Ge, Q. He, D. Yan","doi":"10.1007/s10476-023-0229-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\cal L} = - \\Delta + V\\)</span> be a Schrödinger operator with a nonnegative potential <i>V</i> belonging to the reverse Hölder class <i>B</i><sub><i>q</i></sub> for <i>q</i>> <i>n</i>/2. In this paper, we study the weighted compactness of oscillation and variation commutators generated by BMO-type functions and some Schrödinger operators, which include Riesz transform and other standard Calderón–Zygmund operators.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0229-z.pdf","citationCount":"0","resultStr":"{\"title\":\"On Weighted Compactness of Oscillation and Variation of Commutators Associated with Schrödinger Operators\",\"authors\":\"A. Ge, Q. He, D. Yan\",\"doi\":\"10.1007/s10476-023-0229-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\cal L} = - \\\\Delta + V\\\\)</span> be a Schrödinger operator with a nonnegative potential <i>V</i> belonging to the reverse Hölder class <i>B</i><sub><i>q</i></sub> for <i>q</i>> <i>n</i>/2. In this paper, we study the weighted compactness of oscillation and variation commutators generated by BMO-type functions and some Schrödinger operators, which include Riesz transform and other standard Calderón–Zygmund operators.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0229-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0229-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0229-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Weighted Compactness of Oscillation and Variation of Commutators Associated with Schrödinger Operators
Let \({\cal L} = - \Delta + V\) be a Schrödinger operator with a nonnegative potential V belonging to the reverse Hölder class Bq for q> n/2. In this paper, we study the weighted compactness of oscillation and variation commutators generated by BMO-type functions and some Schrödinger operators, which include Riesz transform and other standard Calderón–Zygmund operators.