{"title":"On Meromorphic Solutions of Nonlinear Complex Differential Equations","authors":"J.-F. Chen, Y.-Y. Feng","doi":"10.1007/s10476-023-0225-3","DOIUrl":null,"url":null,"abstract":"<div><p>By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form </p><div><div><span>$${f^n}{f^\\prime } + P(z,f,{f^\\prime }, \\ldots ,{f^{(t)}}) = {P_1}{e^{{\\alpha _1}z}} + {P_2}{e^{{\\alpha _2}z}} + \\cdots + {P_m}{e^{{\\alpha _m}z}},$$</span></div></div><p> where <i>n</i> ≥ 3, <i>t</i> ≥ 0 and <i>m</i> ≥ 1 are integers, <i>n</i> ≥ <i>m, P</i>(<i>z, f, f′, …, f</i><sup>(<i>t</i>)</sup>) is a differential polynomial in <i>f</i> (<i>z</i>) of degree <i>d</i> ≤ <i>n</i> with small functions of <i>f</i> (<i>z</i>) as its coefficients, and α<sub><i>j</i></sub>, <i>P</i><sub><i>j</i></sub> (<i>j</i> = 1, 2, …, <i>m</i>) are nonzero constants such that ∣α<sub>1</sub>∣ > ∣α<sub>2</sub>∣ > … > ∣α<sub><i>m</i></sub>∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 3","pages":"699 - 719"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0225-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0225-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form
where n ≥ 3, t ≥ 0 and m ≥ 1 are integers, n ≥ m, P(z, f, f′, …, f(t)) is a differential polynomial in f (z) of degree d ≤ n with small functions of f (z) as its coefficients, and αj, Pj (j = 1, 2, …, m) are nonzero constants such that ∣α1∣ > ∣α2∣ > … > ∣αm∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.