{"title":"On the Commutativity of Closed Symmetric Operators","authors":"S. Dehimi, M. H. Mortad, A. Bachir","doi":"10.1007/s10476-023-0226-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we mainly show that if a product <i>AB</i> (or <i>BA</i>) of a closed symmetric operator <i>A</i> and a bounded positive operator <i>B</i> is normal, then it is self-adjoint. Equivalently, this means that <i>B</i> commutes with <i>A</i>. Certain generalizations and consequences are also presented.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 3","pages":"721 - 731"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0226-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we mainly show that if a product AB (or BA) of a closed symmetric operator A and a bounded positive operator B is normal, then it is self-adjoint. Equivalently, this means that B commutes with A. Certain generalizations and consequences are also presented.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.