测量理论中的完成程序

Pub Date : 2023-09-06 DOI:10.1007/s10476-023-0233-3
A. G. Smirnov, M. S. Smirnov
{"title":"测量理论中的完成程序","authors":"A. G. Smirnov,&nbsp;M. S. Smirnov","doi":"10.1007/s10476-023-0233-3","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content <i>μ</i>. With every such ring <span>\\({\\cal N}\\)</span>, an extension of <i>μ</i> is naturally associated which is called the <span>\\({\\cal N}\\)</span>-completion of <i>μ</i>. The <span>\\({\\cal N}\\)</span>-completion operation comprises most previously known completion-type procedures and also gives rise to some new extensions, which may be useful for constructing counterexamples in measure theory. We find a condition ensuring that <i>σ</i>-additivity of a content is preserved under the <span>\\({\\cal N}\\)</span>-completion and establish a criterion for the <span>\\({\\cal N}\\)</span>-completion of a measure to be again a measure.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Completion Procedures in Measure Theory\",\"authors\":\"A. G. Smirnov,&nbsp;M. S. Smirnov\",\"doi\":\"10.1007/s10476-023-0233-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content <i>μ</i>. With every such ring <span>\\\\({\\\\cal N}\\\\)</span>, an extension of <i>μ</i> is naturally associated which is called the <span>\\\\({\\\\cal N}\\\\)</span>-completion of <i>μ</i>. The <span>\\\\({\\\\cal N}\\\\)</span>-completion operation comprises most previously known completion-type procedures and also gives rise to some new extensions, which may be useful for constructing counterexamples in measure theory. We find a condition ensuring that <i>σ</i>-additivity of a content is preserved under the <span>\\\\({\\\\cal N}\\\\)</span>-completion and establish a criterion for the <span>\\\\({\\\\cal N}\\\\)</span>-completion of a measure to be again a measure.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0233-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0233-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了通过添加新的空集来统一处理群值内容的扩展(即定义在环上的加性集函数)。我们的方法基于内容μ的完备环的概念。对于每一个这样的环\({\cal N}\),μ的一个扩展是自然关联的,它被称为μ的\({\cal N{\)-完备。完备运算包含了大多数以前已知的完备型过程,也产生了一些新的扩展,这可能有助于构造测度论中的反例。我们发现了一个条件,确保一个内容的σ-可加性在\({\cal N}\)-完备下保持,并建立了一个测度的\({{\cl N}\)-完备再次是测度的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Completion Procedures in Measure Theory

We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content μ. With every such ring \({\cal N}\), an extension of μ is naturally associated which is called the \({\cal N}\)-completion of μ. The \({\cal N}\)-completion operation comprises most previously known completion-type procedures and also gives rise to some new extensions, which may be useful for constructing counterexamples in measure theory. We find a condition ensuring that σ-additivity of a content is preserved under the \({\cal N}\)-completion and establish a criterion for the \({\cal N}\)-completion of a measure to be again a measure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信