Advances in Nonlinear Analysis最新文献

筛选
英文 中文
Symmetries of Ricci flows 里奇流的对称性
1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2023-0106
Enrique López, Stylianos Dimas, Yuri Bozhkov
{"title":"Symmetries of Ricci flows","authors":"Enrique López, Stylianos Dimas, Yuri Bozhkov","doi":"10.1515/anona-2023-0106","DOIUrl":"https://doi.org/10.1515/anona-2023-0106","url":null,"abstract":"Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n -dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static” Ricci flow) and of some particular types of metrics of interest, such as, on warped products of manifolds. Finally, we use the symmetries found to obtain invariant solutions of the Ricci flow for the particular families of metrics considered.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135954347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey on some vanishing viscosity limit results 关于一些消失粘度极限结果的综述
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0309
H. Beirão da Veiga, F. Crispo
{"title":"A survey on some vanishing viscosity limit results","authors":"H. Beirão da Veiga, F. Crispo","doi":"10.1515/anona-2022-0309","DOIUrl":"https://doi.org/10.1515/anona-2022-0309","url":null,"abstract":"Abstract We present a survey concerning the convergence, as the viscosity goes to zero, of the solutions to the three-dimensional evolutionary Navier-Stokes equations to solutions of the Euler equations. After considering the Cauchy problem, particular attention is given to the convergence under Navier slip-type boundary conditions. We show that, in the presence of flat boundaries (typically, the half-space case), convergence holds, uniformly in time, with respect to the initial data’s norm. In spite of this result (and of a similar result for arbitrary two-dimensional domains), strong inviscid limit results are proved to be false in general domains, in correspondence to a very large family of smooth initial data. In Section 6, we present a result in this direction.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48168710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions 具有时滞和声学边界条件的对数粘弹性方程的Blow-up
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0310
Sun‐Hye Park
{"title":"Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions","authors":"Sun‐Hye Park","doi":"10.1515/anona-2022-0310","DOIUrl":"https://doi.org/10.1515/anona-2022-0310","url":null,"abstract":"Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46601371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Generalized Liouville theorem for viscosity solutions to a singular Monge-Ampère equation 奇异Monge-Ampère方程粘性解的广义Liouville定理
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0284
H. Jian, Xianduo Wang
{"title":"Generalized Liouville theorem for viscosity solutions to a singular Monge-Ampère equation","authors":"H. Jian, Xianduo Wang","doi":"10.1515/anona-2022-0284","DOIUrl":"https://doi.org/10.1515/anona-2022-0284","url":null,"abstract":"Abstract In this article, we study the asymptotic behaviour at infinity for viscosity solutions to a singular Monge-Ampère equation in half space from affine geometry. In particular, we extend the Liouville theorem for smooth solutions to the case of viscosity solutions by a completely different method from the smooth case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47584886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type 一类二阶Emden-Fowler型非线性离散方程解的渐近性质
1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2023-0105
Josef Diblík, Evgeniya Korobko
{"title":"Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type","authors":"Josef Diblík, Evgeniya Korobko","doi":"10.1515/anona-2023-0105","DOIUrl":"https://doi.org/10.1515/anona-2023-0105","url":null,"abstract":"Abstract The article investigates a second-order nonlinear difference equation of Emden-Fowler type <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>±</m:mo> <m:msup> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> {Delta }^{2}uleft(k)pm {k}^{alpha }{u}^{m}left(k)=0, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k is the independent variable with values <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo form=\"prefix\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> </m:math> k={k}_{0},{k}_{0}+1,ldots hspace{0.33em} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>u</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> u:left{{k}_{0},{k}_{0}+1,ldots hspace{0.33em}right}to {mathbb{R}} is the dependent variable, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:math> {k}_{0} is a fixed integer, and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {Delta }^{2}uleft(k) is its second-order forward difference. New conditions with respect to parameters <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> alpha in {mathbb{R}} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> min {mathbb{R}} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>≠</m:mo> <m:mn>1</m:mn> </m:math> mne 1 , are found such that the equation admits a solution asymptotically repre","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136002854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front propagation in a double degenerate equation with delay 一类带时滞的二重退化方程的前传播
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0313
Wei-Jian Bo, Shiliang Wu, Li-Jun Du
{"title":"Front propagation in a double degenerate equation with delay","authors":"Wei-Jian Bo, Shiliang Wu, Li-Jun Du","doi":"10.1515/anona-2022-0313","DOIUrl":"https://doi.org/10.1515/anona-2022-0313","url":null,"abstract":"Abstract The current article is concerned with the traveling fronts for a class of double degenerate equations with delay. We first show that the traveling fronts decay algebraically at one end, while those may decay exponentially or algebraically at the other end, which depend on the wave speed of traveling fronts. Based on the asymptotical behavior, the uniqueness and stability of traveling fronts are then proved. Of particular interest is the effect of the lower order term and higher order term on the critical speed. We mention that, under the double degenerate case, the nonlinear reaction is less competitive due to the appearance of degeneracy. This yields that the critical speed depends on the lower order term and higher order term, which is different from the nondegenerate case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44528231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the dynamics of grounded shallow ice sheets: Modeling and analysis 浅地层冰盖的动力学:模拟与分析
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0280
Paolo Piersanti, R. Temam
{"title":"On the dynamics of grounded shallow ice sheets: Modeling and analysis","authors":"Paolo Piersanti, R. Temam","doi":"10.1515/anona-2022-0280","DOIUrl":"https://doi.org/10.1515/anona-2022-0280","url":null,"abstract":"Abstract In this article, we formulate a model describing the evolution of thickness of a grounded shallow ice sheet. The thickness of the ice sheet is constrained to be nonnegative. This renders the problem under consideration an obstacle problem. A rigorous analysis shows that the model is thus governed by a set of variational inequalities that involve nonlinearities in the time derivative and in the elliptic term, and that it admits solutions, whose existence is established by means of a semi-discrete scheme and the penalty method.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47943948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Existence and blow-up of solutions in Hénon-type heat equation with exponential nonlinearity 具有指数非线性的hsamnon型热方程解的存在性及爆破
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0290
Dong-sheng Gao, Jun Wang, Xuan Wang
{"title":"Existence and blow-up of solutions in Hénon-type heat equation with exponential nonlinearity","authors":"Dong-sheng Gao, Jun Wang, Xuan Wang","doi":"10.1515/anona-2022-0290","DOIUrl":"https://doi.org/10.1515/anona-2022-0290","url":null,"abstract":"Abstract In the present article, we are concerned with the following problem: v t = Δ v + ∣ x ∣ β e v , x ∈ R N , t > 0 , v ( x , 0 ) = v 0 ( x ) , x ∈ R N , left{phantom{rule[-1.25em]{}{0ex}}begin{array}{ll}{v}_{t}=Delta v+| x{| }^{beta }{e}^{v},hspace{1.0em}& xin {{mathbb{R}}}^{N},hspace{0.33em}tgt 0, vleft(x,0)={v}_{0}left(x),hspace{1.0em}& xin {{mathbb{R}}}^{N},end{array}right. where N ≥ 3 Nge 3 , 0 < β < 2 0lt beta lt 2 , and v 0 {v}_{0} is a continuous function in R N {{mathbb{R}}}^{N} . We prove the existence and asymptotic behavior of forward self-similar solutions in the case where v 0 {v}_{0} decays at the rate − ( 2 + β ) log ∣ x ∣ -left(2+beta )log | x| as ∣ x ∣ → ∞ | x| to infty . Particularly, we obtain the optimal decay bound for initial value v 0 {v}_{0} .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44574952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Poincaré map of degenerate monodromic singularities with Puiseux inverse integrating factor 具有Puiseux逆积分因子的退化单点奇异点的poincar<s:1>映射
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0314
I. A. García, J. Giné
{"title":"The Poincaré map of degenerate monodromic singularities with Puiseux inverse integrating factor","authors":"I. A. García, J. Giné","doi":"10.1515/anona-2022-0314","DOIUrl":"https://doi.org/10.1515/anona-2022-0314","url":null,"abstract":"Abstract We consider analytic families of planar vector fields depending analytically on the parameters in Λ Lambda that guarantee the existence of a (may be degenerate and with characteristic directions) monodromic singularity. We characterize the structure of the asymptotic Dulac series of the Poincaré map associated to the singularity when the family possesses a Puiseux inverse integrating factor in terms of its multiplicity and index. This characterization is only valid in a restricted monodromic parameter space Λ Λ ∗ Lambda backslash {Lambda }^{ast } associated to the nonexistence of local curves with zero angular speed. As a byproduct, we are able to study the center-focus problem (under the assumption of the existence of some Cauchy principal values) in very degenerated cases where no other tools are available. We illustrate the theory with several nontrivial examples.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43206351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normalized solutions for the p-Laplacian equation with a trapping potential 具有俘获势的p-Laplacian方程的归一化解
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0291
Chao Wang, Juntao Sun
{"title":"Normalized solutions for the p-Laplacian equation with a trapping potential","authors":"Chao Wang, Juntao Sun","doi":"10.1515/anona-2022-0291","DOIUrl":"https://doi.org/10.1515/anona-2022-0291","url":null,"abstract":"Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {int }_{{{mathbb{R}}}^{N}}| u{| }^{r}{rm{d}}x=c for given c > 0 . cgt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43212309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信