{"title":"具有变增长和非线性源的双相抛物型方程","authors":"R. Arora, S. Shmarev","doi":"10.1515/anona-2022-0271","DOIUrl":null,"url":null,"abstract":"Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\\rm{div}}\\left({\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u)=F\\left(z,u,\\nabla u),\\hspace{1.0em}z=\\left(x,t)\\in \\Omega \\times \\left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u=(| \\nabla u{| }^{p\\left(z)-2}+a\\left(z)| \\nabla u{| }^{q\\left(z)-2})\\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \\frac{2N}{N+2}\\lt {p}^{-}\\le p\\left(z)\\le q\\left(z)\\lt p\\left(z)+\\frac{{r}^{\\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\\ast }={r}^{\\ast }\\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\\min }_{{\\overline{Q}}_{T}}\\hspace{0.33em}p\\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\\left(z,u,\\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \\begin{array}{l}{u}_{t}\\in {L}^{2}\\left({Q}_{T}),\\hspace{1.0em}| \\nabla u{| }^{p\\left(z)+\\delta }\\in {L}^{1}\\left({Q}_{T})\\hspace{1.0em}\\hspace{0.1em}\\text{for every}\\hspace{0.1em}\\hspace{0.33em}0\\le \\delta \\lt {r}^{\\ast },\\\\ | \\nabla u{| }^{s\\left(z)},\\hspace{0.33em}a\\left(z)| \\nabla u{| }^{q\\left(z)}\\in {L}^{\\infty }\\left(0,T;\\hspace{0.33em}{L}^{1}\\left(\\Omega ))\\hspace{1em}{\\rm{with}}\\hspace{0.33em}s\\left(z)=\\max \\left\\{2,p\\left(z)\\right\\}.\\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\\mathcal{A}}(z,{({\\varepsilon }^{2}+| \\nabla u{| }^{2})}^{1\\text{/}2})\\nabla u , ε > 0 \\varepsilon \\gt 0 .","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Double-phase parabolic equations with variable growth and nonlinear sources\",\"authors\":\"R. Arora, S. Shmarev\",\"doi\":\"10.1515/anona-2022-0271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\\\\rm{div}}\\\\left({\\\\mathcal{A}}\\\\left(z,| \\\\nabla u| )\\\\nabla u)=F\\\\left(z,u,\\\\nabla u),\\\\hspace{1.0em}z=\\\\left(x,t)\\\\in \\\\Omega \\\\times \\\\left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\\\\mathcal{A}}\\\\left(z,| \\\\nabla u| )\\\\nabla u=(| \\\\nabla u{| }^{p\\\\left(z)-2}+a\\\\left(z)| \\\\nabla u{| }^{q\\\\left(z)-2})\\\\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\\\\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \\\\frac{2N}{N+2}\\\\lt {p}^{-}\\\\le p\\\\left(z)\\\\le q\\\\left(z)\\\\lt p\\\\left(z)+\\\\frac{{r}^{\\\\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\\\\ast }={r}^{\\\\ast }\\\\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\\\\min }_{{\\\\overline{Q}}_{T}}\\\\hspace{0.33em}p\\\\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\\\\left(z,u,\\\\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \\\\begin{array}{l}{u}_{t}\\\\in {L}^{2}\\\\left({Q}_{T}),\\\\hspace{1.0em}| \\\\nabla u{| }^{p\\\\left(z)+\\\\delta }\\\\in {L}^{1}\\\\left({Q}_{T})\\\\hspace{1.0em}\\\\hspace{0.1em}\\\\text{for every}\\\\hspace{0.1em}\\\\hspace{0.33em}0\\\\le \\\\delta \\\\lt {r}^{\\\\ast },\\\\\\\\ | \\\\nabla u{| }^{s\\\\left(z)},\\\\hspace{0.33em}a\\\\left(z)| \\\\nabla u{| }^{q\\\\left(z)}\\\\in {L}^{\\\\infty }\\\\left(0,T;\\\\hspace{0.33em}{L}^{1}\\\\left(\\\\Omega ))\\\\hspace{1em}{\\\\rm{with}}\\\\hspace{0.33em}s\\\\left(z)=\\\\max \\\\left\\\\{2,p\\\\left(z)\\\\right\\\\}.\\\\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\\\\mathcal{A}}(z,{({\\\\varepsilon }^{2}+| \\\\nabla u{| }^{2})}^{1\\\\text{/}2})\\\\nabla u , ε > 0 \\\\varepsilon \\\\gt 0 .\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0271\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Double-phase parabolic equations with variable growth and nonlinear sources
Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\rm{div}}\left({\mathcal{A}}\left(z,| \nabla u| )\nabla u)=F\left(z,u,\nabla u),\hspace{1.0em}z=\left(x,t)\in \Omega \times \left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\mathcal{A}}\left(z,| \nabla u| )\nabla u=(| \nabla u{| }^{p\left(z)-2}+a\left(z)| \nabla u{| }^{q\left(z)-2})\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \frac{2N}{N+2}\lt {p}^{-}\le p\left(z)\le q\left(z)\lt p\left(z)+\frac{{r}^{\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\ast }={r}^{\ast }\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\min }_{{\overline{Q}}_{T}}\hspace{0.33em}p\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\left(z,u,\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \begin{array}{l}{u}_{t}\in {L}^{2}\left({Q}_{T}),\hspace{1.0em}| \nabla u{| }^{p\left(z)+\delta }\in {L}^{1}\left({Q}_{T})\hspace{1.0em}\hspace{0.1em}\text{for every}\hspace{0.1em}\hspace{0.33em}0\le \delta \lt {r}^{\ast },\\ | \nabla u{| }^{s\left(z)},\hspace{0.33em}a\left(z)| \nabla u{| }^{q\left(z)}\in {L}^{\infty }\left(0,T;\hspace{0.33em}{L}^{1}\left(\Omega ))\hspace{1em}{\rm{with}}\hspace{0.33em}s\left(z)=\max \left\{2,p\left(z)\right\}.\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\mathcal{A}}(z,{({\varepsilon }^{2}+| \nabla u{| }^{2})}^{1\text{/}2})\nabla u , ε > 0 \varepsilon \gt 0 .