Touchdown solutions in general MEMS models

IF 3.2 1区 数学 Q1 MATHEMATICS
R. Clemente, J. Marcos do Ó, Esteban da Silva, E. Shamarova
{"title":"Touchdown solutions in general MEMS models","authors":"R. Clemente, J. Marcos do Ó, Esteban da Silva, E. Shamarova","doi":"10.1515/anona-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract We study general problems modeling electrostatic microelectromechanical systems devices (Pλ ) φ ( r , − u ′ ( r ) ) = λ ∫ 0 r f ( s ) g ( u ( s ) ) d s , r ∈ ( 0 , 1 ) , 0 < u ( r ) < 1 , r ∈ ( 0 , 1 ) , u ( 1 ) = 0 , \\left\\{\\begin{array}{ll}\\varphi (r,-u^{\\prime} \\left(r))=\\lambda \\underset{0}{\\overset{r}{\\displaystyle \\int }}\\frac{f\\left(s)}{g\\left(u\\left(s))}{\\rm{d}}s,\\hspace{1.0em}& r\\in \\left(0,1),\\\\ 0\\lt u\\left(r)\\lt 1,\\hspace{1.0em}& r\\in \\left(0,1),\\\\ u\\left(1)=0,\\hspace{1.0em}\\end{array}\\right. where φ \\varphi , g g , and f f are some functions on [ 0 , 1 ] \\left[0,1] and λ > 0 \\lambda \\gt 0 is a parameter. We obtain results on the existence and regularity of a touchdown solution to ( P λ {P}_{\\lambda } ) and find upper and lower bounds on the respective pull-in voltage. In the particular case, when φ ( r , v ) = r α ∣ v ∣ β v \\varphi \\left(r,v)={r}^{\\alpha }{| v| }^{\\beta }v , i.e., when the associated differential equation involves the operator r − γ ( r α ∣ u ′ ∣ β u ′ ) ′ {r}^{-\\gamma }\\left({r}^{\\alpha }{| u^{\\prime} | }^{\\beta }u^{\\prime} )^{\\prime} , we obtain an exact asymptotic behavior of the touchdown solution in a neighborhood of the origin.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0102","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We study general problems modeling electrostatic microelectromechanical systems devices (Pλ ) φ ( r , − u ′ ( r ) ) = λ ∫ 0 r f ( s ) g ( u ( s ) ) d s , r ∈ ( 0 , 1 ) , 0 < u ( r ) < 1 , r ∈ ( 0 , 1 ) , u ( 1 ) = 0 , \left\{\begin{array}{ll}\varphi (r,-u^{\prime} \left(r))=\lambda \underset{0}{\overset{r}{\displaystyle \int }}\frac{f\left(s)}{g\left(u\left(s))}{\rm{d}}s,\hspace{1.0em}& r\in \left(0,1),\\ 0\lt u\left(r)\lt 1,\hspace{1.0em}& r\in \left(0,1),\\ u\left(1)=0,\hspace{1.0em}\end{array}\right. where φ \varphi , g g , and f f are some functions on [ 0 , 1 ] \left[0,1] and λ > 0 \lambda \gt 0 is a parameter. We obtain results on the existence and regularity of a touchdown solution to ( P λ {P}_{\lambda } ) and find upper and lower bounds on the respective pull-in voltage. In the particular case, when φ ( r , v ) = r α ∣ v ∣ β v \varphi \left(r,v)={r}^{\alpha }{| v| }^{\beta }v , i.e., when the associated differential equation involves the operator r − γ ( r α ∣ u ′ ∣ β u ′ ) ′ {r}^{-\gamma }\left({r}^{\alpha }{| u^{\prime} | }^{\beta }u^{\prime} )^{\prime} , we obtain an exact asymptotic behavior of the touchdown solution in a neighborhood of the origin.
通用MEMS模型的触地解决方案
摘要研究静电微机电系统器件(Pλ) φ (r, - u ' (r)) = λ∫0 r f (s) g (u (s)) d s, r∈(0,1),0 < u (r) < 1 , r ∈ ( 0 , 1 ) , u ( 1 ) = 0 , \left { \begin{array}{ll}\varphi (r,-u^{\prime} \left(r))=\lambda \underset{0}{\overset{r}{\displaystyle \int }}\frac{f\left(s)}{g\left(u\left(s))}{\rm{d}}s,\hspace{1.0em}& r\in \left(0,1),\\ 0\lt u\left(r)\lt 1,\hspace{1.0em}& r\in \left(0,1),\\ u\left(1)=0,\hspace{1.0em}\end{array}\right . where φ \varphi , g g , and f f are some functions on [ 0 , 1 ] \left[0,1] and λ >< 1, r∈(0,1),u (1) = 0, {。其中φ , g g, f f是[> 0 \lambda\gt 0是参数。我们得到了(P λ P_ {}{\lambda)触地解的存在性和规律性},并和下界。在特殊情况下,当φ (r,v)=r α∣v∣β v \varphi\left (r{,}v)=r^ {\alpha | v| ^ }{}{\beta v,即当相关}微分{方程涉及算子r−γ (r α∣}u '{∣β u ') ' r^- \gamma}\left (r^ {}{\alpha | u^ }{{\prime} | ^ }{\beta u^ }{\prime})^ {\prime}时,我们得到了在原点附近的触地解的精确渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信