具有高振荡障碍的全非线性椭圆方程随机均匀化的粘度法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ki-ahm Lee, Se-Chan Lee
{"title":"具有高振荡障碍的全非线性椭圆方程随机均匀化的粘度法","authors":"Ki-ahm Lee, Se-Chan Lee","doi":"10.1515/anona-2022-0273","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we establish a viscosity method for random homogenization of an obstacle problem with nondivergence structure. We study the asymptotic behavior of the viscosity solution u ε {u}_{\\varepsilon } of fully nonlinear equations in a perforated domain with the stationary ergodic condition. By capturing the behavior of the homogeneous solution, analyzing the characters of the corresponding obstacle problem, and finding the capacity-like quantity through the construction of appropriate barriers, we prove that the limit profile u u of u ε {u}_{\\varepsilon } satisfies a homogenized equation without obstacles.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscosity method for random homogenization of fully nonlinear elliptic equations with highly oscillating obstacles\",\"authors\":\"Ki-ahm Lee, Se-Chan Lee\",\"doi\":\"10.1515/anona-2022-0273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we establish a viscosity method for random homogenization of an obstacle problem with nondivergence structure. We study the asymptotic behavior of the viscosity solution u ε {u}_{\\\\varepsilon } of fully nonlinear equations in a perforated domain with the stationary ergodic condition. By capturing the behavior of the homogeneous solution, analyzing the characters of the corresponding obstacle problem, and finding the capacity-like quantity through the construction of appropriate barriers, we prove that the limit profile u u of u ε {u}_{\\\\varepsilon } satisfies a homogenized equation without obstacles.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0273\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0273","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们建立了一个粘性方法,用于求解具有非发散结构的障碍物问题的随机均匀化。我们研究了粘性解uε的渐近行为{u}_具有平稳遍历条件的穿孔域中的全非线性方程的{\varepsilon}。通过捕捉齐次解的行为,分析相应障碍物问题的特征,并通过构造适当的障碍物找到类似容量的量,我们证明了uε的极限轮廓u{u}_{\varepsilon}满足无障碍的齐化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viscosity method for random homogenization of fully nonlinear elliptic equations with highly oscillating obstacles
Abstract In this article, we establish a viscosity method for random homogenization of an obstacle problem with nondivergence structure. We study the asymptotic behavior of the viscosity solution u ε {u}_{\varepsilon } of fully nonlinear equations in a perforated domain with the stationary ergodic condition. By capturing the behavior of the homogeneous solution, analyzing the characters of the corresponding obstacle problem, and finding the capacity-like quantity through the construction of appropriate barriers, we prove that the limit profile u u of u ε {u}_{\varepsilon } satisfies a homogenized equation without obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信