R. Clemente, J. Marcos do Ó, Esteban da Silva, E. Shamarova
{"title":"通用MEMS模型的触地解决方案","authors":"R. Clemente, J. Marcos do Ó, Esteban da Silva, E. Shamarova","doi":"10.1515/anona-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract We study general problems modeling electrostatic microelectromechanical systems devices (Pλ ) φ ( r , − u ′ ( r ) ) = λ ∫ 0 r f ( s ) g ( u ( s ) ) d s , r ∈ ( 0 , 1 ) , 0 < u ( r ) < 1 , r ∈ ( 0 , 1 ) , u ( 1 ) = 0 , \\left\\{\\begin{array}{ll}\\varphi (r,-u^{\\prime} \\left(r))=\\lambda \\underset{0}{\\overset{r}{\\displaystyle \\int }}\\frac{f\\left(s)}{g\\left(u\\left(s))}{\\rm{d}}s,\\hspace{1.0em}& r\\in \\left(0,1),\\\\ 0\\lt u\\left(r)\\lt 1,\\hspace{1.0em}& r\\in \\left(0,1),\\\\ u\\left(1)=0,\\hspace{1.0em}\\end{array}\\right. where φ \\varphi , g g , and f f are some functions on [ 0 , 1 ] \\left[0,1] and λ > 0 \\lambda \\gt 0 is a parameter. We obtain results on the existence and regularity of a touchdown solution to ( P λ {P}_{\\lambda } ) and find upper and lower bounds on the respective pull-in voltage. In the particular case, when φ ( r , v ) = r α ∣ v ∣ β v \\varphi \\left(r,v)={r}^{\\alpha }{| v| }^{\\beta }v , i.e., when the associated differential equation involves the operator r − γ ( r α ∣ u ′ ∣ β u ′ ) ′ {r}^{-\\gamma }\\left({r}^{\\alpha }{| u^{\\prime} | }^{\\beta }u^{\\prime} )^{\\prime} , we obtain an exact asymptotic behavior of the touchdown solution in a neighborhood of the origin.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Touchdown solutions in general MEMS models\",\"authors\":\"R. Clemente, J. Marcos do Ó, Esteban da Silva, E. Shamarova\",\"doi\":\"10.1515/anona-2023-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study general problems modeling electrostatic microelectromechanical systems devices (Pλ ) φ ( r , − u ′ ( r ) ) = λ ∫ 0 r f ( s ) g ( u ( s ) ) d s , r ∈ ( 0 , 1 ) , 0 < u ( r ) < 1 , r ∈ ( 0 , 1 ) , u ( 1 ) = 0 , \\\\left\\\\{\\\\begin{array}{ll}\\\\varphi (r,-u^{\\\\prime} \\\\left(r))=\\\\lambda \\\\underset{0}{\\\\overset{r}{\\\\displaystyle \\\\int }}\\\\frac{f\\\\left(s)}{g\\\\left(u\\\\left(s))}{\\\\rm{d}}s,\\\\hspace{1.0em}& r\\\\in \\\\left(0,1),\\\\\\\\ 0\\\\lt u\\\\left(r)\\\\lt 1,\\\\hspace{1.0em}& r\\\\in \\\\left(0,1),\\\\\\\\ u\\\\left(1)=0,\\\\hspace{1.0em}\\\\end{array}\\\\right. where φ \\\\varphi , g g , and f f are some functions on [ 0 , 1 ] \\\\left[0,1] and λ > 0 \\\\lambda \\\\gt 0 is a parameter. We obtain results on the existence and regularity of a touchdown solution to ( P λ {P}_{\\\\lambda } ) and find upper and lower bounds on the respective pull-in voltage. In the particular case, when φ ( r , v ) = r α ∣ v ∣ β v \\\\varphi \\\\left(r,v)={r}^{\\\\alpha }{| v| }^{\\\\beta }v , i.e., when the associated differential equation involves the operator r − γ ( r α ∣ u ′ ∣ β u ′ ) ′ {r}^{-\\\\gamma }\\\\left({r}^{\\\\alpha }{| u^{\\\\prime} | }^{\\\\beta }u^{\\\\prime} )^{\\\\prime} , we obtain an exact asymptotic behavior of the touchdown solution in a neighborhood of the origin.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0102\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0102","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
摘要
摘要研究静电微机电系统器件(Pλ) φ (r, - u ' (r)) = λ∫0 r f (s) g (u (s)) d s, r∈(0,1),0 < u (r) < 1 , r ∈ ( 0 , 1 ) , u ( 1 ) = 0 , \left { \begin{array}{ll}\varphi (r,-u^{\prime} \left(r))=\lambda \underset{0}{\overset{r}{\displaystyle \int }}\frac{f\left(s)}{g\left(u\left(s))}{\rm{d}}s,\hspace{1.0em}& r\in \left(0,1),\\ 0\lt u\left(r)\lt 1,\hspace{1.0em}& r\in \left(0,1),\\ u\left(1)=0,\hspace{1.0em}\end{array}\right . where φ \varphi , g g , and f f are some functions on [ 0 , 1 ] \left[0,1] and λ >< 1, r∈(0,1),u (1) = 0, {。其中φ , g g, f f是[> 0 \lambda\gt 0是参数。我们得到了(P λ P_ {}{\lambda)触地解的存在性和规律性},并和下界。在特殊情况下,当φ (r,v)=r α∣v∣β v \varphi\left (r{,}v)=r^ {\alpha | v| ^ }{}{\beta v,即当相关}微分{方程涉及算子r−γ (r α∣}u '{∣β u ') ' r^- \gamma}\left (r^ {}{\alpha | u^ }{{\prime} | ^ }{\beta u^ }{\prime})^ {\prime}时,我们得到了在原点附近的触地解的精确渐近行为。
Abstract We study general problems modeling electrostatic microelectromechanical systems devices (Pλ ) φ ( r , − u ′ ( r ) ) = λ ∫ 0 r f ( s ) g ( u ( s ) ) d s , r ∈ ( 0 , 1 ) , 0 < u ( r ) < 1 , r ∈ ( 0 , 1 ) , u ( 1 ) = 0 , \left\{\begin{array}{ll}\varphi (r,-u^{\prime} \left(r))=\lambda \underset{0}{\overset{r}{\displaystyle \int }}\frac{f\left(s)}{g\left(u\left(s))}{\rm{d}}s,\hspace{1.0em}& r\in \left(0,1),\\ 0\lt u\left(r)\lt 1,\hspace{1.0em}& r\in \left(0,1),\\ u\left(1)=0,\hspace{1.0em}\end{array}\right. where φ \varphi , g g , and f f are some functions on [ 0 , 1 ] \left[0,1] and λ > 0 \lambda \gt 0 is a parameter. We obtain results on the existence and regularity of a touchdown solution to ( P λ {P}_{\lambda } ) and find upper and lower bounds on the respective pull-in voltage. In the particular case, when φ ( r , v ) = r α ∣ v ∣ β v \varphi \left(r,v)={r}^{\alpha }{| v| }^{\beta }v , i.e., when the associated differential equation involves the operator r − γ ( r α ∣ u ′ ∣ β u ′ ) ′ {r}^{-\gamma }\left({r}^{\alpha }{| u^{\prime} | }^{\beta }u^{\prime} )^{\prime} , we obtain an exact asymptotic behavior of the touchdown solution in a neighborhood of the origin.