Viscosity method for random homogenization of fully nonlinear elliptic equations with highly oscillating obstacles

IF 3.2 1区 数学 Q1 MATHEMATICS
Ki-ahm Lee, Se-Chan Lee
{"title":"Viscosity method for random homogenization of fully nonlinear elliptic equations with highly oscillating obstacles","authors":"Ki-ahm Lee, Se-Chan Lee","doi":"10.1515/anona-2022-0273","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we establish a viscosity method for random homogenization of an obstacle problem with nondivergence structure. We study the asymptotic behavior of the viscosity solution u ε {u}_{\\varepsilon } of fully nonlinear equations in a perforated domain with the stationary ergodic condition. By capturing the behavior of the homogeneous solution, analyzing the characters of the corresponding obstacle problem, and finding the capacity-like quantity through the construction of appropriate barriers, we prove that the limit profile u u of u ε {u}_{\\varepsilon } satisfies a homogenized equation without obstacles.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":"266 - 303"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0273","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we establish a viscosity method for random homogenization of an obstacle problem with nondivergence structure. We study the asymptotic behavior of the viscosity solution u ε {u}_{\varepsilon } of fully nonlinear equations in a perforated domain with the stationary ergodic condition. By capturing the behavior of the homogeneous solution, analyzing the characters of the corresponding obstacle problem, and finding the capacity-like quantity through the construction of appropriate barriers, we prove that the limit profile u u of u ε {u}_{\varepsilon } satisfies a homogenized equation without obstacles.
具有高振荡障碍的全非线性椭圆方程随机均匀化的粘度法
摘要在本文中,我们建立了一个粘性方法,用于求解具有非发散结构的障碍物问题的随机均匀化。我们研究了粘性解uε的渐近行为{u}_具有平稳遍历条件的穿孔域中的全非线性方程的{\varepsilon}。通过捕捉齐次解的行为,分析相应障碍物问题的特征,并通过构造适当的障碍物找到类似容量的量,我们证明了uε的极限轮廓u{u}_{\varepsilon}满足无障碍的齐化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信