具有剪切速率相关粘度的非牛顿流体的非平稳Poiseuille流

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
G. Panasenko, K. Pileckas
{"title":"具有剪切速率相关粘度的非牛顿流体的非平稳Poiseuille流","authors":"G. Panasenko, K. Pileckas","doi":"10.1515/anona-2022-0259","DOIUrl":null,"url":null,"abstract":"Abstract A nonstationary Poiseuille flow of a non-Newtonian fluid with the shear rate dependent viscosity is considered. This problem is nonlinear and nonlocal in time and inverse to the nonlinear heat equation. The provided mathematical analysis includes the proof of the existence, uniqueness, regularity, and stability of the velocity and the pressure slope for a given flux carrier and of the exponential decay of the solution as the time variable goes to infinity for the exponentially decaying flux.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonstationary Poiseuille flow of a non-Newtonian fluid with the shear rate-dependent viscosity\",\"authors\":\"G. Panasenko, K. Pileckas\",\"doi\":\"10.1515/anona-2022-0259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A nonstationary Poiseuille flow of a non-Newtonian fluid with the shear rate dependent viscosity is considered. This problem is nonlinear and nonlocal in time and inverse to the nonlinear heat equation. The provided mathematical analysis includes the proof of the existence, uniqueness, regularity, and stability of the velocity and the pressure slope for a given flux carrier and of the exponential decay of the solution as the time variable goes to infinity for the exponentially decaying flux.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0259\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

考虑黏度随剪切速率变化的非牛顿流体的非平稳泊泽维尔流。这个问题在时间上是非线性和非局部的,与非线性热方程相反。所提供的数学分析包括证明给定通量载体的速度和压力斜率的存在性、唯一性、规律性和稳定性,以及指数衰减通量随时间变量趋于无穷时解的指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonstationary Poiseuille flow of a non-Newtonian fluid with the shear rate-dependent viscosity
Abstract A nonstationary Poiseuille flow of a non-Newtonian fluid with the shear rate dependent viscosity is considered. This problem is nonlinear and nonlocal in time and inverse to the nonlinear heat equation. The provided mathematical analysis includes the proof of the existence, uniqueness, regularity, and stability of the velocity and the pressure slope for a given flux carrier and of the exponential decay of the solution as the time variable goes to infinity for the exponentially decaying flux.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信