{"title":"广义Jackiw-Pi模型的驻波解","authors":"Hyungjin Huh, Yuanfeng Jin, You Ma, Guanghui Jin","doi":"10.1515/anona-2022-0261","DOIUrl":null,"url":null,"abstract":"Abstract We study the existence and nonexistence of the standing wave solution for the generalized Jackiw-Pi model by using variational method. Depending on interaction strength λ \\lambda , we have three different situations. The existence and nonexistence of the standing wave solution correspond to 1 < λ 1\\lt \\lambda and 0 < λ < 1 0\\lt \\lambda \\lt 1 , respectively. We have the explicit solution of self-dual equation for the borderline λ = 1 \\lambda =1 .","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standing wave solution for the generalized Jackiw-Pi model\",\"authors\":\"Hyungjin Huh, Yuanfeng Jin, You Ma, Guanghui Jin\",\"doi\":\"10.1515/anona-2022-0261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the existence and nonexistence of the standing wave solution for the generalized Jackiw-Pi model by using variational method. Depending on interaction strength λ \\\\lambda , we have three different situations. The existence and nonexistence of the standing wave solution correspond to 1 < λ 1\\\\lt \\\\lambda and 0 < λ < 1 0\\\\lt \\\\lambda \\\\lt 1 , respectively. We have the explicit solution of self-dual equation for the borderline λ = 1 \\\\lambda =1 .\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0261\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0261","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Standing wave solution for the generalized Jackiw-Pi model
Abstract We study the existence and nonexistence of the standing wave solution for the generalized Jackiw-Pi model by using variational method. Depending on interaction strength λ \lambda , we have three different situations. The existence and nonexistence of the standing wave solution correspond to 1 < λ 1\lt \lambda and 0 < λ < 1 0\lt \lambda \lt 1 , respectively. We have the explicit solution of self-dual equation for the borderline λ = 1 \lambda =1 .