On the critical Choquard-Kirchhoff problem on the Heisenberg group

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xueqi Sun, Yueqiang Song, Sihua Liang
{"title":"On the critical Choquard-Kirchhoff problem on the Heisenberg group","authors":"Xueqi Sun, Yueqiang Song, Sihua Liang","doi":"10.1515/anona-2022-0270","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we deal with the following critical Choquard-Kirchhoff problem on the Heisenberg group of the form: M ( ‖ u ‖ 2 ) ( − Δ H u + V ( ξ ) u ) = ∫ H N ∣ u ( η ) ∣ Q λ ∗ ∣ η − 1 ξ ∣ λ d η ∣ u ∣ Q λ ∗ − 2 u + μ f ( ξ , u ) , M\\left(\\Vert u{\\Vert }^{2})\\left(-{\\Delta }_{{\\mathbb{H}}}u\\left+V\\left(\\xi )u)=\\left(\\mathop{\\int }\\limits_{{{\\mathbb{H}}}^{N}}\\frac{| u\\left(\\eta ){| }^{{Q}_{\\lambda }^{\\ast }}}{| {\\eta }^{-1}\\xi {| }^{\\lambda }}{\\rm{d}}\\eta \\right)| u{| }^{{Q}_{\\lambda }^{\\ast }-2}u+\\mu f\\left(\\xi ,u), where M M is the Kirchhoff function, Δ H {\\Delta }_{{\\mathbb{H}}} is the Kohn Laplacian on the Heisenberg group H N {{\\mathbb{H}}}^{N} , f f is a Carathéodory function, μ > 0 \\mu \\gt 0 is a parameter and Q λ ∗ = 2 Q − λ Q − 2 {Q}_{\\lambda }^{\\ast }=\\frac{2Q-\\lambda }{Q-2} is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. We first establish a new version of the concentration-compactness principle for the Choquard equation on the Heisenberg group. Then, combining with the mountain pass theorem, we obtain the existence of nontrivial solutions to the aforementioned problem in the case of nondegenerate and degenerate cases.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0270","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract In this paper, we deal with the following critical Choquard-Kirchhoff problem on the Heisenberg group of the form: M ( ‖ u ‖ 2 ) ( − Δ H u + V ( ξ ) u ) = ∫ H N ∣ u ( η ) ∣ Q λ ∗ ∣ η − 1 ξ ∣ λ d η ∣ u ∣ Q λ ∗ − 2 u + μ f ( ξ , u ) , M\left(\Vert u{\Vert }^{2})\left(-{\Delta }_{{\mathbb{H}}}u\left+V\left(\xi )u)=\left(\mathop{\int }\limits_{{{\mathbb{H}}}^{N}}\frac{| u\left(\eta ){| }^{{Q}_{\lambda }^{\ast }}}{| {\eta }^{-1}\xi {| }^{\lambda }}{\rm{d}}\eta \right)| u{| }^{{Q}_{\lambda }^{\ast }-2}u+\mu f\left(\xi ,u), where M M is the Kirchhoff function, Δ H {\Delta }_{{\mathbb{H}}} is the Kohn Laplacian on the Heisenberg group H N {{\mathbb{H}}}^{N} , f f is a Carathéodory function, μ > 0 \mu \gt 0 is a parameter and Q λ ∗ = 2 Q − λ Q − 2 {Q}_{\lambda }^{\ast }=\frac{2Q-\lambda }{Q-2} is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. We first establish a new version of the concentration-compactness principle for the Choquard equation on the Heisenberg group. Then, combining with the mountain pass theorem, we obtain the existence of nontrivial solutions to the aforementioned problem in the case of nondegenerate and degenerate cases.
关于Heisenberg群的临界Choquard-Kirchhoff问题
摘要本文讨论了以下形式的海森堡群上的临界Choquard-Kirchhoff问题:M(‖u‖2)(−ΔHu+V(ξ,M\left(\Vert u{\Vert}^{2})\left(-{\Delta}^{{Q}_{\lang1033\lambda}^{\sast}}{|{\eta}^}-1}\neneneba xi{|}^^{{Q}_{\lambda}^{\ast}-2}u+\mu f\left(\neneneba xi,u),其中M M是基尔霍夫函数,ΔH{\Delta}_{\mathbb{H}}}是海森堡群H N上的Kohn拉普拉斯算子,f f是Carathéodory函数,μ>0\mu\gt 0是参数,Qλ∗=2 Q−λQ−2{Q}_{\lambda}^{\ast}=\frac{2Q-λ}{Q-2}是Hardy-Littlewood-Sobolev不等式意义上的临界指数。我们首先在Heisenberg群上建立了Choquard方程的浓度紧致性原理的一个新版本。然后,结合山口定理,在非退化和退化情况下,我们得到了上述问题的非平凡解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信