Double-phase parabolic equations with variable growth and nonlinear sources

IF 3.2 1区 数学 Q1 MATHEMATICS
R. Arora, S. Shmarev
{"title":"Double-phase parabolic equations with variable growth and nonlinear sources","authors":"R. Arora, S. Shmarev","doi":"10.1515/anona-2022-0271","DOIUrl":null,"url":null,"abstract":"Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\\rm{div}}\\left({\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u)=F\\left(z,u,\\nabla u),\\hspace{1.0em}z=\\left(x,t)\\in \\Omega \\times \\left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u=(| \\nabla u{| }^{p\\left(z)-2}+a\\left(z)| \\nabla u{| }^{q\\left(z)-2})\\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \\frac{2N}{N+2}\\lt {p}^{-}\\le p\\left(z)\\le q\\left(z)\\lt p\\left(z)+\\frac{{r}^{\\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\\ast }={r}^{\\ast }\\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\\min }_{{\\overline{Q}}_{T}}\\hspace{0.33em}p\\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\\left(z,u,\\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \\begin{array}{l}{u}_{t}\\in {L}^{2}\\left({Q}_{T}),\\hspace{1.0em}| \\nabla u{| }^{p\\left(z)+\\delta }\\in {L}^{1}\\left({Q}_{T})\\hspace{1.0em}\\hspace{0.1em}\\text{for every}\\hspace{0.1em}\\hspace{0.33em}0\\le \\delta \\lt {r}^{\\ast },\\\\ | \\nabla u{| }^{s\\left(z)},\\hspace{0.33em}a\\left(z)| \\nabla u{| }^{q\\left(z)}\\in {L}^{\\infty }\\left(0,T;\\hspace{0.33em}{L}^{1}\\left(\\Omega ))\\hspace{1em}{\\rm{with}}\\hspace{0.33em}s\\left(z)=\\max \\left\\{2,p\\left(z)\\right\\}.\\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\\mathcal{A}}(z,{({\\varepsilon }^{2}+| \\nabla u{| }^{2})}^{1\\text{/}2})\\nabla u , ε > 0 \\varepsilon \\gt 0 .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0271","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\rm{div}}\left({\mathcal{A}}\left(z,| \nabla u| )\nabla u)=F\left(z,u,\nabla u),\hspace{1.0em}z=\left(x,t)\in \Omega \times \left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\mathcal{A}}\left(z,| \nabla u| )\nabla u=(| \nabla u{| }^{p\left(z)-2}+a\left(z)| \nabla u{| }^{q\left(z)-2})\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \frac{2N}{N+2}\lt {p}^{-}\le p\left(z)\le q\left(z)\lt p\left(z)+\frac{{r}^{\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\ast }={r}^{\ast }\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\min }_{{\overline{Q}}_{T}}\hspace{0.33em}p\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\left(z,u,\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \begin{array}{l}{u}_{t}\in {L}^{2}\left({Q}_{T}),\hspace{1.0em}| \nabla u{| }^{p\left(z)+\delta }\in {L}^{1}\left({Q}_{T})\hspace{1.0em}\hspace{0.1em}\text{for every}\hspace{0.1em}\hspace{0.33em}0\le \delta \lt {r}^{\ast },\\ | \nabla u{| }^{s\left(z)},\hspace{0.33em}a\left(z)| \nabla u{| }^{q\left(z)}\in {L}^{\infty }\left(0,T;\hspace{0.33em}{L}^{1}\left(\Omega ))\hspace{1em}{\rm{with}}\hspace{0.33em}s\left(z)=\max \left\{2,p\left(z)\right\}.\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\mathcal{A}}(z,{({\varepsilon }^{2}+| \nabla u{| }^{2})}^{1\text{/}2})\nabla u , ε > 0 \varepsilon \gt 0 .
具有变增长和非线性源的双相抛物型方程
摘要我们研究了抛物型方程u t−div(A(z,ŞõuŞ)Şu)=F(z,u,Şu,z=(x,t)∈Ω×(0,t)的齐次Dirichlet问题,{u}_{t}-{\rm{div}}\left({\mathcal{A}}\left(z,|\nabla u|)\nabla u)=F\left(z,u,\nabla u),\hspace{1.0em}z=\left(x,t)\in\Omega\times\left(0,t})\nabla u和非线性源F。初始函数属于由通量定义的Musielak-Orlitz空间。函数a a、p p和q q是Lipschitz连续的,a(z)a \left(z)是非负的,并且可以在一组非零测度上消失。指数p p和q q满足平衡条件2 N N+2<p−≤p(z)≤q(z)<p(z−=最小q’T p(z){p}^{-}={\min}_{\overline{q}}_{0.33em}p\left(z)。结果表明,在关于第二和第三自变量的F(z,u,Şu)F\left(z,u,\nabla u)增长的适当条件下,该问题的解u具有以下性质:u t∈L2(Q t),对每0≤δ
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信