{"title":"Double-phase parabolic equations with variable growth and nonlinear sources","authors":"R. Arora, S. Shmarev","doi":"10.1515/anona-2022-0271","DOIUrl":null,"url":null,"abstract":"Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\\rm{div}}\\left({\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u)=F\\left(z,u,\\nabla u),\\hspace{1.0em}z=\\left(x,t)\\in \\Omega \\times \\left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u=(| \\nabla u{| }^{p\\left(z)-2}+a\\left(z)| \\nabla u{| }^{q\\left(z)-2})\\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \\frac{2N}{N+2}\\lt {p}^{-}\\le p\\left(z)\\le q\\left(z)\\lt p\\left(z)+\\frac{{r}^{\\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\\ast }={r}^{\\ast }\\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\\min }_{{\\overline{Q}}_{T}}\\hspace{0.33em}p\\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\\left(z,u,\\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \\begin{array}{l}{u}_{t}\\in {L}^{2}\\left({Q}_{T}),\\hspace{1.0em}| \\nabla u{| }^{p\\left(z)+\\delta }\\in {L}^{1}\\left({Q}_{T})\\hspace{1.0em}\\hspace{0.1em}\\text{for every}\\hspace{0.1em}\\hspace{0.33em}0\\le \\delta \\lt {r}^{\\ast },\\\\ | \\nabla u{| }^{s\\left(z)},\\hspace{0.33em}a\\left(z)| \\nabla u{| }^{q\\left(z)}\\in {L}^{\\infty }\\left(0,T;\\hspace{0.33em}{L}^{1}\\left(\\Omega ))\\hspace{1em}{\\rm{with}}\\hspace{0.33em}s\\left(z)=\\max \\left\\{2,p\\left(z)\\right\\}.\\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\\mathcal{A}}(z,{({\\varepsilon }^{2}+| \\nabla u{| }^{2})}^{1\\text{/}2})\\nabla u , ε > 0 \\varepsilon \\gt 0 .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":"304 - 335"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0271","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
Abstract
Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\rm{div}}\left({\mathcal{A}}\left(z,| \nabla u| )\nabla u)=F\left(z,u,\nabla u),\hspace{1.0em}z=\left(x,t)\in \Omega \times \left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\mathcal{A}}\left(z,| \nabla u| )\nabla u=(| \nabla u{| }^{p\left(z)-2}+a\left(z)| \nabla u{| }^{q\left(z)-2})\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \frac{2N}{N+2}\lt {p}^{-}\le p\left(z)\le q\left(z)\lt p\left(z)+\frac{{r}^{\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\ast }={r}^{\ast }\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\min }_{{\overline{Q}}_{T}}\hspace{0.33em}p\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\left(z,u,\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \begin{array}{l}{u}_{t}\in {L}^{2}\left({Q}_{T}),\hspace{1.0em}| \nabla u{| }^{p\left(z)+\delta }\in {L}^{1}\left({Q}_{T})\hspace{1.0em}\hspace{0.1em}\text{for every}\hspace{0.1em}\hspace{0.33em}0\le \delta \lt {r}^{\ast },\\ | \nabla u{| }^{s\left(z)},\hspace{0.33em}a\left(z)| \nabla u{| }^{q\left(z)}\in {L}^{\infty }\left(0,T;\hspace{0.33em}{L}^{1}\left(\Omega ))\hspace{1em}{\rm{with}}\hspace{0.33em}s\left(z)=\max \left\{2,p\left(z)\right\}.\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\mathcal{A}}(z,{({\varepsilon }^{2}+| \nabla u{| }^{2})}^{1\text{/}2})\nabla u , ε > 0 \varepsilon \gt 0 .
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.