Double-phase parabolic equations with variable growth and nonlinear sources

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
R. Arora, S. Shmarev
{"title":"Double-phase parabolic equations with variable growth and nonlinear sources","authors":"R. Arora, S. Shmarev","doi":"10.1515/anona-2022-0271","DOIUrl":null,"url":null,"abstract":"Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\\rm{div}}\\left({\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u)=F\\left(z,u,\\nabla u),\\hspace{1.0em}z=\\left(x,t)\\in \\Omega \\times \\left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\\mathcal{A}}\\left(z,| \\nabla u| )\\nabla u=(| \\nabla u{| }^{p\\left(z)-2}+a\\left(z)| \\nabla u{| }^{q\\left(z)-2})\\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \\frac{2N}{N+2}\\lt {p}^{-}\\le p\\left(z)\\le q\\left(z)\\lt p\\left(z)+\\frac{{r}^{\\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\\ast }={r}^{\\ast }\\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\\min }_{{\\overline{Q}}_{T}}\\hspace{0.33em}p\\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\\left(z,u,\\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \\begin{array}{l}{u}_{t}\\in {L}^{2}\\left({Q}_{T}),\\hspace{1.0em}| \\nabla u{| }^{p\\left(z)+\\delta }\\in {L}^{1}\\left({Q}_{T})\\hspace{1.0em}\\hspace{0.1em}\\text{for every}\\hspace{0.1em}\\hspace{0.33em}0\\le \\delta \\lt {r}^{\\ast },\\\\ | \\nabla u{| }^{s\\left(z)},\\hspace{0.33em}a\\left(z)| \\nabla u{| }^{q\\left(z)}\\in {L}^{\\infty }\\left(0,T;\\hspace{0.33em}{L}^{1}\\left(\\Omega ))\\hspace{1em}{\\rm{with}}\\hspace{0.33em}s\\left(z)=\\max \\left\\{2,p\\left(z)\\right\\}.\\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\\mathcal{A}}(z,{({\\varepsilon }^{2}+| \\nabla u{| }^{2})}^{1\\text{/}2})\\nabla u , ε > 0 \\varepsilon \\gt 0 .","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract We study the homogeneous Dirichlet problem for the parabolic equations u t − div ( A ( z , ∣ ∇ u ∣ ) ∇ u ) = F ( z , u , ∇ u ) , z = ( x , t ) ∈ Ω × ( 0 , T ) , {u}_{t}-{\rm{div}}\left({\mathcal{A}}\left(z,| \nabla u| )\nabla u)=F\left(z,u,\nabla u),\hspace{1.0em}z=\left(x,t)\in \Omega \times \left(0,T), with the double phase flux A ( z , ∣ ∇ u ∣ ) ∇ u = ( ∣ ∇ u ∣ p ( z ) − 2 + a ( z ) ∣ ∇ u ∣ q ( z ) − 2 ) ∇ u {\mathcal{A}}\left(z,| \nabla u| )\nabla u=(| \nabla u{| }^{p\left(z)-2}+a\left(z)| \nabla u{| }^{q\left(z)-2})\nabla u and the nonlinear source F F . The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a a , p p , and q q are Lipschitz-continuous, a ( z ) a\left(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p p , and q q satisfy the balance conditions 2 N N + 2 < p − ≤ p ( z ) ≤ q ( z ) < p ( z ) + r ∗ 2 \frac{2N}{N+2}\lt {p}^{-}\le p\left(z)\le q\left(z)\lt p\left(z)+\frac{{r}^{\ast }}{2} with r ∗ = r ∗ ( p − , N ) {r}^{\ast }={r}^{\ast }\left({p}^{-},N) , p − = min Q ¯ T p ( z ) {p}^{-}={\min }_{{\overline{Q}}_{T}}\hspace{0.33em}p\left(z) . It is shown that under suitable conditions on the growth of F ( z , u , ∇ u ) F\left(z,u,\nabla u) with respect to the second and third arguments, the problem has a solution u u with the following properties: u t ∈ L 2 ( Q T ) , ∣ ∇ u ∣ p ( z ) + δ ∈ L 1 ( Q T ) for every 0 ≤ δ < r ∗ , ∣ ∇ u ∣ s ( z ) , a ( z ) ∣ ∇ u ∣ q ( z ) ∈ L ∞ ( 0 , T ; L 1 ( Ω ) ) with s ( z ) = max { 2 , p ( z ) } . \begin{array}{l}{u}_{t}\in {L}^{2}\left({Q}_{T}),\hspace{1.0em}| \nabla u{| }^{p\left(z)+\delta }\in {L}^{1}\left({Q}_{T})\hspace{1.0em}\hspace{0.1em}\text{for every}\hspace{0.1em}\hspace{0.33em}0\le \delta \lt {r}^{\ast },\\ | \nabla u{| }^{s\left(z)},\hspace{0.33em}a\left(z)| \nabla u{| }^{q\left(z)}\in {L}^{\infty }\left(0,T;\hspace{0.33em}{L}^{1}\left(\Omega ))\hspace{1em}{\rm{with}}\hspace{0.33em}s\left(z)=\max \left\{2,p\left(z)\right\}.\end{array} Uniqueness is proven under stronger assumptions on the source F F . The same results are established for the equations with the regularized flux A ( z , ( ε 2 + ∣ ∇ u ∣ 2 ) 1 / 2 ) ∇ u {\mathcal{A}}(z,{({\varepsilon }^{2}+| \nabla u{| }^{2})}^{1\text{/}2})\nabla u , ε > 0 \varepsilon \gt 0 .
具有变增长和非线性源的双相抛物型方程
摘要我们研究了抛物型方程u t−div(A(z,ŞõuŞ)Şu)=F(z,u,Şu,z=(x,t)∈Ω×(0,t)的齐次Dirichlet问题,{u}_{t}-{\rm{div}}\left({\mathcal{A}}\left(z,|\nabla u|)\nabla u)=F\left(z,u,\nabla u),\hspace{1.0em}z=\left(x,t)\in\Omega\times\left(0,t})\nabla u和非线性源F。初始函数属于由通量定义的Musielak-Orlitz空间。函数a a、p p和q q是Lipschitz连续的,a(z)a \left(z)是非负的,并且可以在一组非零测度上消失。指数p p和q q满足平衡条件2 N N+2<p−≤p(z)≤q(z)<p(z−=最小q’T p(z){p}^{-}={\min}_{\overline{q}}_{0.33em}p\left(z)。结果表明,在关于第二和第三自变量的F(z,u,Şu)F\left(z,u,\nabla u)增长的适当条件下,该问题的解u具有以下性质:u t∈L2(Q t),对每0≤δ
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信