IEEE Computer Architecture Letters最新文献

筛选
英文 中文
Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator Ramulator 2.0:现代、模块化、可扩展的 DRAM 仿真器
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-11-17 DOI: 10.1109/LCA.2023.3333759
Haocong Luo;Yahya Can Tuğrul;F. Nisa Bostancı;Ataberk Olgun;A. Giray Yağlıkçı;Onur Mutlu
{"title":"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator","authors":"Haocong Luo;Yahya Can Tuğrul;F. Nisa Bostancı;Ataberk Olgun;A. Giray Yağlıkçı;Onur Mutlu","doi":"10.1109/LCA.2023.3333759","DOIUrl":"https://doi.org/10.1109/LCA.2023.3333759","url":null,"abstract":"We present Ramulator 2.0, a highly modular and extensible DRAM simulator that enables rapid and agile implementation and evaluation of design changes in the memory controller and DRAM to meet the increasing research effort in improving the performance, security, and reliability of memory systems. Ramulator 2.0 abstracts and models key components in a DRAM-based memory system and their interactions into shared \u0000<italic>interfaces</i>\u0000 and independent \u0000<italic>implementations</i>\u0000. Doing so enables easy modification and extension of the modeled functions of the memory controller and DRAM in Ramulator 2.0. The DRAM specification syntax of Ramulator 2.0 is concise and human-readable, facilitating easy modifications and extensions. Ramulator 2.0 implements a library of reusable templated lambda functions to model the functionalities of DRAM commands to simplify the implementation of new DRAM standards, including DDR5, LPDDR5, HBM3, and GDDR6. We showcase Ramulator 2.0's modularity and extensibility by implementing and evaluating a wide variety of RowHammer mitigation techniques that require \u0000<italic>different</i>\u0000 memory controller design changes. These techniques are added modularly as separate implementations \u0000<italic>without</i>\u0000 changing \u0000<italic>any</i>\u0000 code in the baseline memory controller implementation. Ramulator 2.0 is rigorously validated and maintains a fast simulation speed compared to existing cycle-accurate DRAM simulators.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"112-116"},"PeriodicalIF":2.3,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards an Accelerator for Differential and Algebraic Equations Useful to Scientists 开发对科学家有用的微分方程和代数方程加速器
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-11-13 DOI: 10.1109/LCA.2023.3332318
Jonathan Garcia-Mallen;Shuohao Ping;Alex Miralles-Cordal;Ian Martin;Mukund Ramakrishnan;Yipeng Huang
{"title":"Towards an Accelerator for Differential and Algebraic Equations Useful to Scientists","authors":"Jonathan Garcia-Mallen;Shuohao Ping;Alex Miralles-Cordal;Ian Martin;Mukund Ramakrishnan;Yipeng Huang","doi":"10.1109/LCA.2023.3332318","DOIUrl":"10.1109/LCA.2023.3332318","url":null,"abstract":"We discuss our preliminary results in building a configurable accelerator for differential equation time stepping and iterative methods for algebraic equations. Relative to prior efforts in building hardware accelerators for numerical methods, our focus is on the following: 1) Demonstrating a higher order of numerical convergence that is needed to actually support existing numerical algorithms. 2) Providing the capacity for wide vectors of variables by keeping the hardware design components as simple as possible. 3) Demonstrating configurable hardware support for a variety of numerical algorithms that form the core of scientific computation libraries. These efforts are toward the goal of making the accelerator democratically accessible by computational scientists.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"185-188"},"PeriodicalIF":2.3,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
gem5-accel: A Pre-RTL Simulation Toolchain for Accelerator Architecture Validation gem5-accel:用于加速器架构验证的预 RTL 仿真工具链
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-11-01 DOI: 10.1109/LCA.2023.3329443
João Vieira;Nuno Roma;Gabriel Falcao;Pedro Tomás
{"title":"gem5-accel: A Pre-RTL Simulation Toolchain for Accelerator Architecture Validation","authors":"João Vieira;Nuno Roma;Gabriel Falcao;Pedro Tomás","doi":"10.1109/LCA.2023.3329443","DOIUrl":"10.1109/LCA.2023.3329443","url":null,"abstract":"Attaining the performance and efficiency levels required by modern applications often requires the use of application-specific accelerators. However, writing synthesizable Register-Transfer Level code for such accelerators is a complex, expensive, and time-consuming process, which is cumbersome for early architecture development phases. To tackle this issue, a pre-synthesis simulation toolchain is herein proposed that facilitates the early architectural evaluation of complex accelerators aggregated to multi-level memory hierarchies. To demonstrate its usefulness, the proposed gem5-accel is used to model a tensor accelerator based on Gemmini, showing that it can successfully anticipate the results of complex hardware accelerators executing deep Neural Networks.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"1-4"},"PeriodicalIF":2.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135361792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing the Silicon Area Overhead of Counter-Based Rowhammer Mitigations 减少基于计数器的行锤缓解措施的硅面积开销
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-10-31 DOI: 10.1109/LCA.2023.3328824
Loïc France;Florent Bruguier;David Novo;Maria Mushtaq;Pascal Benoit
{"title":"Reducing the Silicon Area Overhead of Counter-Based Rowhammer Mitigations","authors":"Loïc France;Florent Bruguier;David Novo;Maria Mushtaq;Pascal Benoit","doi":"10.1109/LCA.2023.3328824","DOIUrl":"10.1109/LCA.2023.3328824","url":null,"abstract":"Modern computer memories have shown to have reliability issues. The main memory is the target of a security threat called Rowhammer, which causes bit flips in adjacent victim cells of aggressor rows. Numerous countermeasures have been proposed, some of the most efficient ones relying on row access counters, with different techniques to reduce the impact on performance, energy consumption and silicon area. In these proposals, the number of counters is calculated using the maximum number of row activations that can be issued to the protected bank. As reducing the number of counters results in lower silicon area and energy overheads, this can have a direct impact on the production and usage costs. In this work, we demonstrate that two of the most efficient countermeasures can have their silicon area overhead reduced by approximately 50% without impacting the protection level by changing their counting granularity.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"61-64"},"PeriodicalIF":2.3,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135263777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Architectural Security Regulation 《建筑保安规例》
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-10-31 DOI: 10.1109/LCA.2023.3327952
Adam Hastings;Ryan Piersma;Simha Sethumadhavan
{"title":"Architectural Security Regulation","authors":"Adam Hastings;Ryan Piersma;Simha Sethumadhavan","doi":"10.1109/LCA.2023.3327952","DOIUrl":"10.1109/LCA.2023.3327952","url":null,"abstract":"Across the world, governments are instituting regulations with the goal of improving the state of computer security. In this paper, we propose how security regulation can be formulated and implemented at the architectural level. Our proposal, called FAIRSHARE, requires architects to spend a pre-determined fraction of system resources (e.g., execution cycles) towards security but leaves the decision of how and where to spend this budget up to the architects of these systems. We discuss how this can elevate security and outline the key architectural support necessary to implement such a solution. Our work is the first work at the intersection of architecture and regulation.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"173-176"},"PeriodicalIF":2.3,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135263775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Quantum Computer Trusted Execution Environment 量子计算机可信执行环境
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-10-19 DOI: 10.1109/LCA.2023.3325852
Theodoros Trochatos;Chuanqi Xu;Sanjay Deshpande;Yao Lu;Yongshan Ding;Jakub Szefer
{"title":"A Quantum Computer Trusted Execution Environment","authors":"Theodoros Trochatos;Chuanqi Xu;Sanjay Deshpande;Yao Lu;Yongshan Ding;Jakub Szefer","doi":"10.1109/LCA.2023.3325852","DOIUrl":"10.1109/LCA.2023.3325852","url":null,"abstract":"We present the first architecture for a trusted execution environment for quantum computers. In the architecture, to protect the user's circuits, they are obfuscated with decoy control pulses added during circuit transpilation by the user. The decoy pulses are removed, i.e. attenuated, by the trusted hardware inside the superconducting quantum computer's fridge before they reach the qubits. This preliminary work demonstrates that protection from possibly malicious cloud providers is feasible with minimal hardware cost.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"177-180"},"PeriodicalIF":2.3,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135056635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Architectural Implications of GNN Aggregation Programming Abstractions GNN 聚合编程抽象的架构影响
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-10-19 DOI: 10.1109/LCA.2023.3326170
Yingjie Qi;Jianlei Yang;Ao Zhou;Tong Qiao;Chunming Hu
{"title":"Architectural Implications of GNN Aggregation Programming Abstractions","authors":"Yingjie Qi;Jianlei Yang;Ao Zhou;Tong Qiao;Chunming Hu","doi":"10.1109/LCA.2023.3326170","DOIUrl":"10.1109/LCA.2023.3326170","url":null,"abstract":"Graph neural networks (GNNs) have gained significant popularity due to the powerful capability to extract useful representations from graph data. As the need for efficient GNN computation intensifies, a variety of programming abstractions designed for optimizing GNN Aggregation have emerged to facilitate acceleration. However, there is no comprehensive evaluation and analysis upon existing abstractions, thus no clear consensus on which approach is better. In this letter, we classify existing programming abstractions for GNN Aggregation by the dimension of data organization and propagation method. By constructing these abstractions on a state-of-the-art GNN library, we perform a thorough and detailed characterization study to compare their performance and efficiency, and provide several insights on future GNN acceleration based on our analysis.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"125-128"},"PeriodicalIF":2.3,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135056990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hardware-Friendly Tiled Singular-Value Decomposition-Based Matrix Multiplication for Transformer-Based Models 基于变压器模型的一种硬件友好的平铺奇异值分解矩阵乘法
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-10-13 DOI: 10.1109/LCA.2023.3323482
Hailong Li;Jaewan Choi;Yongsuk Kwon;Jung Ho Ahn
{"title":"A Hardware-Friendly Tiled Singular-Value Decomposition-Based Matrix Multiplication for Transformer-Based Models","authors":"Hailong Li;Jaewan Choi;Yongsuk Kwon;Jung Ho Ahn","doi":"10.1109/LCA.2023.3323482","DOIUrl":"10.1109/LCA.2023.3323482","url":null,"abstract":"Transformer-based models have become the backbone of numerous state-of-the-art natural language processing (NLP) tasks, including large language models. Matrix multiplication, a fundamental operation in the Transformer-based models, accounts for most of the execution time. While singular value decomposition (SVD) can accelerate this operation by reducing the amount of computation and memory footprints through rank size reduction, it leads to degraded model quality due to challenges in preserving important information. Moreover, this method does not effectively utilize the resources of modern GPUs. In this paper, we propose a hardware-friendly approach: matrix multiplication based on tiled singular value decomposition (TSVD). TSVD divides a matrix into multiple tiles and performs matrix factorization on each tile using SVD. By breaking down the process into smaller regions, TSVD mitigates the loss of important data. We apply the matrices decomposed by TSVD for matrix multiplication, and our TSVD-based matrix multiplication (TSVD-matmul) leverages GPU resources more efficiently compared to the SVD approach. As a result, TSVD-matmul achieved a speedup of 1.03× to 3.24× compared to the SVD approach at compression ratios ranging from 2 to 8. When deployed to GPT-2, TSVD not only performs competitively with a full fine-tuning on the E2E NLG task but also achieves a speedup of 1.06× to 1.24× at 2 to 8 compression ratios while increasing accuracy by up to 1.5 BLEU score.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"169-172"},"PeriodicalIF":2.3,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136305409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inter-Temperature Bandwidth Reduction in Cryogenic QAOA Machines 降低低温 QAOA 设备的温间带宽
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-10-09 DOI: 10.1109/LCA.2023.3322700
Yosuke Ueno;Yuna Tomida;Teruo Tanimoto;Masamitsu Tanaka;Yutaka Tabuchi;Koji Inoue;Hiroshi Nakamura
{"title":"Inter-Temperature Bandwidth Reduction in Cryogenic QAOA Machines","authors":"Yosuke Ueno;Yuna Tomida;Teruo Tanimoto;Masamitsu Tanaka;Yutaka Tabuchi;Koji Inoue;Hiroshi Nakamura","doi":"10.1109/LCA.2023.3322700","DOIUrl":"10.1109/LCA.2023.3322700","url":null,"abstract":"The bandwidth limit between cryogenic and room-temperature environments is a critical bottleneck in superconducting noisy intermediate-scale quantum computers. This paper presents the first trial of algorithm-aware system-level optimization to solve this issue by targeting the quantum approximate optimization algorithm. Our counter-based cryogenic architecture using single-flux quantum logic shows exponential bandwidth reduction and decreases heat inflow and peripheral power consumption of inter-temperature cables, which contributes to the scalability of superconducting quantum computers.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"6-9"},"PeriodicalIF":2.3,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136053842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NoHammer: Preventing Row Hammer With Last-Level Cache Management NoHammer:防止行锤与最后一级缓存管理
IF 2.3 3区 计算机科学
IEEE Computer Architecture Letters Pub Date : 2023-09-29 DOI: 10.1109/LCA.2023.3320670
Seunghak Lee;Ki-Dong Kang;Gyeongseo Park;Nam Sung Kim;Daehoon Kim
{"title":"NoHammer: Preventing Row Hammer With Last-Level Cache Management","authors":"Seunghak Lee;Ki-Dong Kang;Gyeongseo Park;Nam Sung Kim;Daehoon Kim","doi":"10.1109/LCA.2023.3320670","DOIUrl":"https://doi.org/10.1109/LCA.2023.3320670","url":null,"abstract":"Row Hammer (RH) is a circuit-level phenomenon where repetitive activation of a DRAM row causes bit-flips in adjacent rows. Prior studies that rely on extra refreshes to mitigate RH vulnerability demonstrate that bit-flips can be prevented effectively. However, its implementation is challenging due to the significant performance degradation and energy overhead caused by the additional extra refresh for the RH mitigation. To overcome challenges, some studies propose techniques to mitigate the RH attack without relying on extra refresh. These techniques include delaying the activation of an aggressor row for a certain amount of time or swapping an aggressor row with another row to isolate it from victim rows. Although such techniques do not require extra refreshes to mitigate RH, the activation delaying technique may result in high-performance degradation in false-positive cases, and the swapping technique requires high storage overheads to track swap information. We propose \u0000<monospace>NoHammer</monospace>\u0000, an efficient RH mitigation technique to prevent the bit-flips caused by the RH attack by utilizing Last-Level Cache (LLC) management. \u0000<monospace>NoHammer</monospace>\u0000 temporarily extends the associativity of the cache set that is being targeted by utilizing another cache set as the extended set and keeps the cache lines of aggressor rows on the extended set under the eviction-based RH attack. Along with the modification of the LLC replacement policy, \u0000<monospace>NoHammer</monospace>\u0000 ensures that the aggressor row's cache lines are not evicted from the LLC under the RH attack. In our evaluation, we demonstrate that \u0000<monospace>NoHammer</monospace>\u0000 gives 6% higher performance than a baseline without any RH mitigation technique by replacing excessive cache misses caused by the RH attack with LLC hits through sophisticated LLC management, while requiring 45% less storage than prior proposals.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"157-160"},"PeriodicalIF":2.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49962232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信