Haeyoon Cho;Hyojun Son;Jungmin Choi;Byungil Koh;Minho Ha;John Kim
{"title":"在冷数据上主动嵌入,用于深度学习推荐模型训练","authors":"Haeyoon Cho;Hyojun Son;Jungmin Choi;Byungil Koh;Minho Ha;John Kim","doi":"10.1109/LCA.2024.3445948","DOIUrl":null,"url":null,"abstract":"Deep learning recommendation model (DLRM) is an important class of deep learning networks that are commonly used in many applications. DRLM presents unique challenges, especially for scale-out training since it not only has compute and memory-intensive components but the communication between the multiple GPUs is also on the critical path. In this work, we propose how \n<italic>cold</i>\n data in DLRM embedding tables can be exploited to propose proactive embedding. In particular, proactive embedding allows embedding table accesses to be done in advance to reduce the impact of the memory access latency by overlapping the embedding access with communication. Our analysis of proactive embedding demonstrates that it can improve overall training performance by 46%.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"203-206"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training\",\"authors\":\"Haeyoon Cho;Hyojun Son;Jungmin Choi;Byungil Koh;Minho Ha;John Kim\",\"doi\":\"10.1109/LCA.2024.3445948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning recommendation model (DLRM) is an important class of deep learning networks that are commonly used in many applications. DRLM presents unique challenges, especially for scale-out training since it not only has compute and memory-intensive components but the communication between the multiple GPUs is also on the critical path. In this work, we propose how \\n<italic>cold</i>\\n data in DLRM embedding tables can be exploited to propose proactive embedding. In particular, proactive embedding allows embedding table accesses to be done in advance to reduce the impact of the memory access latency by overlapping the embedding access with communication. Our analysis of proactive embedding demonstrates that it can improve overall training performance by 46%.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 2\",\"pages\":\"203-206\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654665/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654665/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training
Deep learning recommendation model (DLRM) is an important class of deep learning networks that are commonly used in many applications. DRLM presents unique challenges, especially for scale-out training since it not only has compute and memory-intensive components but the communication between the multiple GPUs is also on the critical path. In this work, we propose how
cold
data in DLRM embedding tables can be exploited to propose proactive embedding. In particular, proactive embedding allows embedding table accesses to be done in advance to reduce the impact of the memory access latency by overlapping the embedding access with communication. Our analysis of proactive embedding demonstrates that it can improve overall training performance by 46%.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.