{"title":"Non-uniqueness & inadmissibility of the vanishing viscosity limit of the passive scalar transport equation","authors":"L. Huysmans , Edriss S. Titi","doi":"10.1016/j.matpur.2025.103685","DOIUrl":"10.1016/j.matpur.2025.103685","url":null,"abstract":"<div><div>We study the vanishing viscosity/diffusivity limit for the transport of a passive scalar <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi></math></span> by a bounded, divergence-free vector field <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. This is described by the Cauchy problem to the PDE <span><math><mfrac><mrow><mo>∂</mo><mi>f</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>f</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, or with viscosity <span><math><mi>ν</mi><mo>></mo><mn>0</mn></math></span>, to the PDE <span><math><mfrac><mrow><mo>∂</mo><mi>f</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>f</mi><mo>)</mo><mo>−</mo><mi>ν</mi><mi>Δ</mi><mi>f</mi><mo>=</mo><mn>0</mn></math></span>. In the first part of this work, we construct a bounded, divergence-free vector field <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> for which, for any non-constant initial datum, the viscous solutions along different subsequences of the vanishing viscosity limit converge to different solutions to the inviscid problem. In the second part, we construct another bounded, divergence-free vector field <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> for which, for every initial datum, the vanishing viscosity limit of solutions exists, is unique, and converges to an inviscid solution; however, when the initial datum is not constant, this inviscid limit is physically inadmissible due to increasing energy/entropy.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"198 ","pages":"Article 103685"},"PeriodicalIF":2.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Wigdersons' approach to the uncertainty principle","authors":"Nuno Costa Dias , Franz Luef , João Nuno Prata","doi":"10.1016/j.matpur.2025.103689","DOIUrl":"10.1016/j.matpur.2025.103689","url":null,"abstract":"<div><div>We revisit the uncertainty principle from the point of view suggested by A. Wigderson and Y. Wigderson. This approach is based on a primary uncertainty principle from which one can derive several inequalities expressing the impossibility of a simultaneous sharp localization in time and frequency. Moreover, it requires no specific properties of the Fourier transform and can therefore be easily applied to all operators satisfying the primary uncertainty principle. A. Wigderson and Y. Wigderson also suggested many generalizations to higher dimensions and stated several conjectures which we address in the present paper. We argue that we have to consider a more general primary uncertainty principle to prove the results suggested by the authors. As a by-product we obtain some new inequalities akin to the Cowling-Price uncertainty principle, a generalization of the Heisenberg uncertainty principle, and derive the entropic uncertainty principle from the primary uncertainty principles.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"198 ","pages":"Article 103689"},"PeriodicalIF":2.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cylindrical estimates for the Cheeger constant and applications","authors":"Aldo Pratelli , Giorgio Saracco","doi":"10.1016/j.matpur.2024.103633","DOIUrl":"10.1016/j.matpur.2024.103633","url":null,"abstract":"<div><div>We prove a lower bound for the Cheeger constant of a cylinder <span><math><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></math></span>, where Ω is an open and bounded set. As a consequence, we obtain existence of minimizers for the shape functional defined as the ratio between the first Dirichlet eigenvalue of the <em>p</em>-Laplacian and the <em>p</em>-th power of the Cheeger constant, within the class of bounded convex sets in any <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. This positively solves open conjectures raised by Parini (<em>J. Convex Anal.</em> (2017)) and by Briani–Buttazzo–Prinari (<em>Ann. Mat. Pura Appl.</em> (2023)).</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103633"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation of trapped surfaces in the Einstein-Yang-Mills system","authors":"Nikolaos Athanasiou , Puskar Mondal , Shing-Tung Yau","doi":"10.1016/j.matpur.2025.103661","DOIUrl":"10.1016/j.matpur.2025.103661","url":null,"abstract":"<div><div>We prove a scale-invariant, semi-global existence result and a trapped surface formation result in the context of coupled Einstein-Yang-Mills theory, without symmetry assumptions. More precisely, we prove a scale-invariant semi-global existence theorem and show that the focusing of the gravitational and/or chromoelectric-chromomagnetic waves could lead to the formation of a trapped surface. Adopting the signature for decay rates approach introduced in <span><span>[1]</span></span>, we develop a novel gauge (and scale) invariant hierarchy of non-linear estimates for the Yang-Mills curvature which, together with the estimates for the gravitational degrees of freedom, yields the desired semi-global existence result. Once semi-global existence has been established, the formation of a trapped surface follows from a standard ODE argument.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103661"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media","authors":"A. Piatnitski , E. Zhizhina","doi":"10.1016/j.matpur.2025.103660","DOIUrl":"10.1016/j.matpur.2025.103660","url":null,"abstract":"<div><div>We study homogenization problem for non-autonomous parabolic equations of the form <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>u</mi></math></span> with an integral convolution type operator <span><math><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103660"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local existence of solutions to 3D Prandtl equations with a special structure","authors":"Yuming Qin , Xiuqing Wang","doi":"10.1016/j.matpur.2025.103670","DOIUrl":"10.1016/j.matpur.2025.103670","url":null,"abstract":"<div><div>In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow <span><math><mi>U</mi><mo>≠</mo><mtext>constant</mtext></math></span>, this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015) <span><span>[1]</span></span>) which extends from the two dimensional case in <span><span>[1]</span></span> to the present three dimensional case with a special structure.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103670"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Esposito , Georg Heinze , André Schlichting
{"title":"Graph-to-local limit for the nonlocal interaction equation","authors":"Antonio Esposito , Georg Heinze , André Schlichting","doi":"10.1016/j.matpur.2025.103663","DOIUrl":"10.1016/j.matpur.2025.103663","url":null,"abstract":"<div><div>We study a class of nonlocal partial differential equations presenting a tensor-mobility, in space, obtained asymptotically from nonlocal dynamics on localizing infinite graphs. Our strategy relies on the variational structure of both equations, being a Riemannian and Finslerian gradient flow, respectively. More precisely, we prove that weak solutions of the nonlocal interaction equation on graphs converge to weak solutions of the aforementioned class of nonlocal interaction equation with a tensor-mobility in the Euclidean space. This highlights an interesting property of the graph, being a potential space-discretization for the equation under study.</div><div><span>Résumé</span>. Nous étudions une classe d'équations aux dérivées partielles non locales présentant une mobilité tensorielle, dans l'espace, obtenue asymptotiquement à partir de dynamiques non locales sur des graphes infinis localisants. Notre stratégie repose sur la structure variationnelle des deux équations, qui sont respectivement un flot de gradients riemannien et finslérien. Plus précisément, nous prouvons que les solutions faibles de l'équation d'interaction non locale sur les graphes convergent vers des solutions faibles de la classe mentionnée d'équations d'interaction non locales avec une mobilité tensorielle dans l'espace euclidien. Cela met en évidence une propriété intéressante du graphe, à savoir une discrétisation spatiale potentielle pour l'équation étudiée.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103663"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From transient elastic linkages to friction: A complete study of a penalized fourth order equation with delay","authors":"Vuk Milišić , Philippe Souplet","doi":"10.1016/j.matpur.2025.103665","DOIUrl":"10.1016/j.matpur.2025.103665","url":null,"abstract":"<div><div><strong>(English)</strong> In this paper we consider a fourth order nonlinear parabolic delayed problem modeling a quasi-instantaneous turn-over of linkages in the context of cell-motility. The model depends on a small parameter <em>ε</em> which represents a typical time scale of the memory effect. We first prove global existence and uniqueness of solutions for <em>ε</em> fixed. This is achieved by combining suitable fixed-point and energy arguments and by uncovering a nonlocal in time, conserved integral quantity. After giving a complete classification of steady states in terms of elliptic functions, we next show that every solution converges to a steady state as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. When <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, we then establish convergence results on finite time intervals, showing that the solution tends in a suitable sense towards the solution of a parabolic problem without delay. Moreover, we establish the convergence of energies as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, which enables us to show that, for <em>ε</em> small enough, the <em>ε</em>-dependent problem inherits part of the large time asymptotics of the limiting parabolic problem.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103665"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation and perturbations of stable solutions to a stationary mean field game system","authors":"Jules Berry , Olivier Ley , Francisco J. Silva","doi":"10.1016/j.matpur.2025.103666","DOIUrl":"10.1016/j.matpur.2025.103666","url":null,"abstract":"<div><div>This work introduces a new general approach for the numerical analysis of stable equilibria to second order mean field games systems in cases where the uniqueness of solutions may fail. We focus on a stationary case with a purely quadratic Hamiltonian. We propose an abstract framework to study these solutions by reformulating the mean field game system as an abstract equation in a Banach space. In this context, stable equilibria turn out to be regular solutions to this equation, meaning that the linearized system is well-posed. We provide three applications of this property: we study the sensitivity analysis of stable solutions, establish error estimates for their finite element approximations, and prove the local converge of Newton's method in infinite dimensions.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103666"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bistable pulsating fronts in slowly oscillating one-dimensional environments","authors":"Weiwei Ding , François Hamel , Xing Liang","doi":"10.1016/j.matpur.2025.103668","DOIUrl":"10.1016/j.matpur.2025.103668","url":null,"abstract":"<div><div>We consider reaction-diffusion fronts in spatially periodic bistable media with large periods. Whereas the homogenization regime associated with small periods had been well studied for bistable or Fisher-KPP reactions and, in the latter case, a formula for the limit minimal speeds of fronts in media with large periods had also been obtained thanks to the linear formulation of these minimal speeds and their monotonicity with respect to the period, the main remaining open question is concerned with fronts in bistable environments with large periods. In bistable media the unique front speeds are not linearly determined and are not monotone with respect to the spatial period in general, making the analysis of the limit of large periods more intricate. We show in this paper the existence of and an explicit formula for the limit of bistable front speeds as the spatial period goes to infinity. We also prove that the front profiles converge to a family of front profiles associated with spatially homogeneous equations. The main results are based on uniform estimates on the spatial width of the fronts, which themselves use zero number properties and intersection arguments.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103668"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}