平稳平均场博弈系统稳定解的逼近与摄动

IF 2.3 1区 数学 Q1 MATHEMATICS
Jules Berry , Olivier Ley , Francisco J. Silva
{"title":"平稳平均场博弈系统稳定解的逼近与摄动","authors":"Jules Berry ,&nbsp;Olivier Ley ,&nbsp;Francisco J. Silva","doi":"10.1016/j.matpur.2025.103666","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a new general approach for the numerical analysis of stable equilibria to second order mean field games systems in cases where the uniqueness of solutions may fail. We focus on a stationary case with a purely quadratic Hamiltonian. We propose an abstract framework to study these solutions by reformulating the mean field game system as an abstract equation in a Banach space. In this context, stable equilibria turn out to be regular solutions to this equation, meaning that the linearized system is well-posed. We provide three applications of this property: we study the sensitivity analysis of stable solutions, establish error estimates for their finite element approximations, and prove the local converge of Newton's method in infinite dimensions.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103666"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation and perturbations of stable solutions to a stationary mean field game system\",\"authors\":\"Jules Berry ,&nbsp;Olivier Ley ,&nbsp;Francisco J. Silva\",\"doi\":\"10.1016/j.matpur.2025.103666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work introduces a new general approach for the numerical analysis of stable equilibria to second order mean field games systems in cases where the uniqueness of solutions may fail. We focus on a stationary case with a purely quadratic Hamiltonian. We propose an abstract framework to study these solutions by reformulating the mean field game system as an abstract equation in a Banach space. In this context, stable equilibria turn out to be regular solutions to this equation, meaning that the linearized system is well-posed. We provide three applications of this property: we study the sensitivity analysis of stable solutions, establish error estimates for their finite element approximations, and prove the local converge of Newton's method in infinite dimensions.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"194 \",\"pages\":\"Article 103666\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000108\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000108","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文为二阶平均场对策系统在解的唯一性可能失效的情况下的稳定均衡的数值分析提供了一种新的一般方法。我们关注一个纯二次哈密顿函数的平稳情况。我们提出了一个抽象框架来研究这些解,将平均场博弈系统重新表述为Banach空间中的抽象方程。在这种情况下,稳定平衡点变成了这个方程的正则解,这意味着线性化的系统是适定的。我们提供了这一性质的三个应用:研究稳定解的灵敏度分析,建立其有限元近似的误差估计,证明牛顿方法在无限维上的局部收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation and perturbations of stable solutions to a stationary mean field game system
This work introduces a new general approach for the numerical analysis of stable equilibria to second order mean field games systems in cases where the uniqueness of solutions may fail. We focus on a stationary case with a purely quadratic Hamiltonian. We propose an abstract framework to study these solutions by reformulating the mean field game system as an abstract equation in a Banach space. In this context, stable equilibria turn out to be regular solutions to this equation, meaning that the linearized system is well-posed. We provide three applications of this property: we study the sensitivity analysis of stable solutions, establish error estimates for their finite element approximations, and prove the local converge of Newton's method in infinite dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信