{"title":"具有特殊结构的三维Prandtl方程解的局部存在性","authors":"Yuming Qin , Xiuqing Wang","doi":"10.1016/j.matpur.2025.103670","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow <span><math><mi>U</mi><mo>≠</mo><mtext>constant</mtext></math></span>, this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015) <span><span>[1]</span></span>) which extends from the two dimensional case in <span><span>[1]</span></span> to the present three dimensional case with a special structure.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103670"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local existence of solutions to 3D Prandtl equations with a special structure\",\"authors\":\"Yuming Qin , Xiuqing Wang\",\"doi\":\"10.1016/j.matpur.2025.103670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow <span><math><mi>U</mi><mo>≠</mo><mtext>constant</mtext></math></span>, this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015) <span><span>[1]</span></span>) which extends from the two dimensional case in <span><span>[1]</span></span> to the present three dimensional case with a special structure.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"194 \",\"pages\":\"Article 103670\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000145\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000145","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑周期域上三维Prandtl方程,在多项式加权Sobolev空间中,用能量法证明了该方程解的局部存在唯一性。与经典普朗特方程解的存在唯一性相比,经典普朗特方程解在一般外流U≠常数的情况下一直使用Crocco变换,而3D普朗特方程不需要Crocco变换。我们利用消去机制的技巧,构造了一个新的未知函数,证明了三维Prandtl方程(cf. Masmoudi and Wong(2015)[1])解的存在唯一性,从[1]的二维情况扩展到目前具有特殊结构的三维情况。
Local existence of solutions to 3D Prandtl equations with a special structure
In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow , this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015) [1]) which extends from the two dimensional case in [1] to the present three dimensional case with a special structure.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.