契格常数的圆柱形估计及其应用

IF 2.1 1区 数学 Q1 MATHEMATICS
Aldo Pratelli , Giorgio Saracco
{"title":"契格常数的圆柱形估计及其应用","authors":"Aldo Pratelli ,&nbsp;Giorgio Saracco","doi":"10.1016/j.matpur.2024.103633","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a lower bound for the Cheeger constant of a cylinder <span><math><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></math></span>, where Ω is an open and bounded set. As a consequence, we obtain existence of minimizers for the shape functional defined as the ratio between the first Dirichlet eigenvalue of the <em>p</em>-Laplacian and the <em>p</em>-th power of the Cheeger constant, within the class of bounded convex sets in any <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. This positively solves open conjectures raised by Parini (<em>J. Convex Anal.</em> (2017)) and by Briani–Buttazzo–Prinari (<em>Ann. Mat. Pura Appl.</em> (2023)).</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103633"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cylindrical estimates for the Cheeger constant and applications\",\"authors\":\"Aldo Pratelli ,&nbsp;Giorgio Saracco\",\"doi\":\"10.1016/j.matpur.2024.103633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a lower bound for the Cheeger constant of a cylinder <span><math><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></math></span>, where Ω is an open and bounded set. As a consequence, we obtain existence of minimizers for the shape functional defined as the ratio between the first Dirichlet eigenvalue of the <em>p</em>-Laplacian and the <em>p</em>-th power of the Cheeger constant, within the class of bounded convex sets in any <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. This positively solves open conjectures raised by Parini (<em>J. Convex Anal.</em> (2017)) and by Briani–Buttazzo–Prinari (<em>Ann. Mat. Pura Appl.</em> (2023)).</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"194 \",\"pages\":\"Article 103633\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424001314\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001314","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了柱体Ω×(0,L)的Cheeger常数的下界,其中Ω是开有界集。因此,我们得到了形状泛函的最小值的存在性,该泛函定义为p-拉普拉斯的第一个Dirichlet特征值与Cheeger常数的p次幂之间的比率,在任何RN的有界凸集内。这正面地解决了Parini (J. Convex Anal)提出的开放性猜想。(2017))和Briani-Buttazzo-Prinari (Ann。Mat. Pura apple。(2023))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cylindrical estimates for the Cheeger constant and applications
We prove a lower bound for the Cheeger constant of a cylinder Ω×(0,L), where Ω is an open and bounded set. As a consequence, we obtain existence of minimizers for the shape functional defined as the ratio between the first Dirichlet eigenvalue of the p-Laplacian and the p-th power of the Cheeger constant, within the class of bounded convex sets in any RN. This positively solves open conjectures raised by Parini (J. Convex Anal. (2017)) and by Briani–Buttazzo–Prinari (Ann. Mat. Pura Appl. (2023)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信