{"title":"随机演化介质中卷积算子非自治演化问题的均匀化","authors":"A. Piatnitski , E. Zhizhina","doi":"10.1016/j.matpur.2025.103660","DOIUrl":null,"url":null,"abstract":"<div><div>We study homogenization problem for non-autonomous parabolic equations of the form <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>u</mi></math></span> with an integral convolution type operator <span><math><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103660"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media\",\"authors\":\"A. Piatnitski , E. Zhizhina\",\"doi\":\"10.1016/j.matpur.2025.103660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study homogenization problem for non-autonomous parabolic equations of the form <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>u</mi></math></span> with an integral convolution type operator <span><math><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"194 \",\"pages\":\"Article 103660\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000042\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000042","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media
We study homogenization problem for non-autonomous parabolic equations of the form with an integral convolution type operator that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.