论威格森对测不准原理的研究

IF 2.1 1区 数学 Q1 MATHEMATICS
Nuno Costa Dias , Franz Luef , João Nuno Prata
{"title":"论威格森对测不准原理的研究","authors":"Nuno Costa Dias ,&nbsp;Franz Luef ,&nbsp;João Nuno Prata","doi":"10.1016/j.matpur.2025.103689","DOIUrl":null,"url":null,"abstract":"<div><div>We revisit the uncertainty principle from the point of view suggested by A. Wigderson and Y. Wigderson. This approach is based on a primary uncertainty principle from which one can derive several inequalities expressing the impossibility of a simultaneous sharp localization in time and frequency. Moreover, it requires no specific properties of the Fourier transform and can therefore be easily applied to all operators satisfying the primary uncertainty principle. A. Wigderson and Y. Wigderson also suggested many generalizations to higher dimensions and stated several conjectures which we address in the present paper. We argue that we have to consider a more general primary uncertainty principle to prove the results suggested by the authors. As a by-product we obtain some new inequalities akin to the Cowling-Price uncertainty principle, a generalization of the Heisenberg uncertainty principle, and derive the entropic uncertainty principle from the primary uncertainty principles.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"198 ","pages":"Article 103689"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Wigdersons' approach to the uncertainty principle\",\"authors\":\"Nuno Costa Dias ,&nbsp;Franz Luef ,&nbsp;João Nuno Prata\",\"doi\":\"10.1016/j.matpur.2025.103689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We revisit the uncertainty principle from the point of view suggested by A. Wigderson and Y. Wigderson. This approach is based on a primary uncertainty principle from which one can derive several inequalities expressing the impossibility of a simultaneous sharp localization in time and frequency. Moreover, it requires no specific properties of the Fourier transform and can therefore be easily applied to all operators satisfying the primary uncertainty principle. A. Wigderson and Y. Wigderson also suggested many generalizations to higher dimensions and stated several conjectures which we address in the present paper. We argue that we have to consider a more general primary uncertainty principle to prove the results suggested by the authors. As a by-product we obtain some new inequalities akin to the Cowling-Price uncertainty principle, a generalization of the Heisenberg uncertainty principle, and derive the entropic uncertainty principle from the primary uncertainty principles.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"198 \",\"pages\":\"Article 103689\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000339\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000339","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们从A. Wigderson和Y. Wigderson提出的观点重新审视测不准原理。这种方法是基于一个基本的不确定性原理,从中可以推导出几个不等式,表示在时间和频率上同时尖锐定位的不可能性。此外,它不需要傅里叶变换的特定性质,因此可以很容易地应用于满足初级不确定性原理的所有算子。A. Wigderson和Y. Wigderson还提出了许多对高维的推广,并提出了我们在本文中讨论的几个猜想。我们认为,我们必须考虑一个更普遍的初级不确定性原理来证明作者提出的结果。作为一个副产品,我们得到了一些新的不等式,类似于海森堡测不准原理的推广——柯林-普莱斯测不准原理,并从基本测不准原理推导出熵测不准原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Wigdersons' approach to the uncertainty principle
We revisit the uncertainty principle from the point of view suggested by A. Wigderson and Y. Wigderson. This approach is based on a primary uncertainty principle from which one can derive several inequalities expressing the impossibility of a simultaneous sharp localization in time and frequency. Moreover, it requires no specific properties of the Fourier transform and can therefore be easily applied to all operators satisfying the primary uncertainty principle. A. Wigderson and Y. Wigderson also suggested many generalizations to higher dimensions and stated several conjectures which we address in the present paper. We argue that we have to consider a more general primary uncertainty principle to prove the results suggested by the authors. As a by-product we obtain some new inequalities akin to the Cowling-Price uncertainty principle, a generalization of the Heisenberg uncertainty principle, and derive the entropic uncertainty principle from the primary uncertainty principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信