Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media

IF 2.1 1区 数学 Q1 MATHEMATICS
A. Piatnitski , E. Zhizhina
{"title":"Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media","authors":"A. Piatnitski ,&nbsp;E. Zhizhina","doi":"10.1016/j.matpur.2025.103660","DOIUrl":null,"url":null,"abstract":"<div><div>We study homogenization problem for non-autonomous parabolic equations of the form <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>u</mi></math></span> with an integral convolution type operator <span><math><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103660"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000042","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study homogenization problem for non-autonomous parabolic equations of the form tu=L(t)u with an integral convolution type operator L(t) that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信