IF 2.1 1区 数学 Q1 MATHEMATICS
L. Huysmans , Edriss S. Titi
{"title":"Non-uniqueness & inadmissibility of the vanishing viscosity limit of the passive scalar transport equation","authors":"L. Huysmans ,&nbsp;Edriss S. Titi","doi":"10.1016/j.matpur.2025.103685","DOIUrl":null,"url":null,"abstract":"<div><div>We study the vanishing viscosity/diffusivity limit for the transport of a passive scalar <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi></math></span> by a bounded, divergence-free vector field <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. This is described by the Cauchy problem to the PDE <span><math><mfrac><mrow><mo>∂</mo><mi>f</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>f</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, or with viscosity <span><math><mi>ν</mi><mo>&gt;</mo><mn>0</mn></math></span>, to the PDE <span><math><mfrac><mrow><mo>∂</mo><mi>f</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>f</mi><mo>)</mo><mo>−</mo><mi>ν</mi><mi>Δ</mi><mi>f</mi><mo>=</mo><mn>0</mn></math></span>. In the first part of this work, we construct a bounded, divergence-free vector field <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> for which, for any non-constant initial datum, the viscous solutions along different subsequences of the vanishing viscosity limit converge to different solutions to the inviscid problem. In the second part, we construct another bounded, divergence-free vector field <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> for which, for every initial datum, the vanishing viscosity limit of solutions exists, is unique, and converges to an inviscid solution; however, when the initial datum is not constant, this inviscid limit is physically inadmissible due to increasing energy/entropy.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"198 ","pages":"Article 103685"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000297","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有界无发散矢量场 u(x,t)∈R2 对被动标量 f(x,t)∈R 的输运的粘性/扩散性消失极限。这可以用 PDE ∂f∂t+∇⋅(uf)=0 的 Cauchy 问题来描述,或者用粘度 ν>0 的 PDE ∂f∂t+∇⋅(uf)-νΔf=0来描述。在本研究的第一部分,我们构建了一个有界、无发散的矢量场 u(x,t),对于该矢量场,对于任何非恒定初始数据,沿着粘性消失极限的不同子序列的粘性解都会收敛到不粘性问题的不同解。在第二部分中,我们构建了另一个有界、无发散的矢量场 u(x,t),对于该矢量场,对于每个初始数据,解的粘性消失极限都存在,而且是唯一的,并收敛于无粘性解;然而,当初始数据不是常数时,由于能量/熵的增加,这种无粘性极限在物理上是不允许的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniqueness & inadmissibility of the vanishing viscosity limit of the passive scalar transport equation
We study the vanishing viscosity/diffusivity limit for the transport of a passive scalar f(x,t)R by a bounded, divergence-free vector field u(x,t)R2. This is described by the Cauchy problem to the PDE ft+(uf)=0, or with viscosity ν>0, to the PDE ft+(uf)νΔf=0. In the first part of this work, we construct a bounded, divergence-free vector field u(x,t) for which, for any non-constant initial datum, the viscous solutions along different subsequences of the vanishing viscosity limit converge to different solutions to the inviscid problem. In the second part, we construct another bounded, divergence-free vector field u(x,t) for which, for every initial datum, the vanishing viscosity limit of solutions exists, is unique, and converges to an inviscid solution; however, when the initial datum is not constant, this inviscid limit is physically inadmissible due to increasing energy/entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信