{"title":"Local existence of solutions to 3D Prandtl equations with a special structure","authors":"Yuming Qin , Xiuqing Wang","doi":"10.1016/j.matpur.2025.103670","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow <span><math><mi>U</mi><mo>≠</mo><mtext>constant</mtext></math></span>, this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015) <span><span>[1]</span></span>) which extends from the two dimensional case in <span><span>[1]</span></span> to the present three dimensional case with a special structure.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103670"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000145","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow , this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015) [1]) which extends from the two dimensional case in [1] to the present three dimensional case with a special structure.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.