Algebra & Number Theory最新文献

筛选
英文 中文
Decidability via the tilting correspondence 通过倾斜对应的可判定性
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-06 DOI: 10.2140/ant.2024.18.209
Konstantinos Kartas
{"title":"Decidability via the tilting correspondence","authors":"Konstantinos Kartas","doi":"10.2140/ant.2024.18.209","DOIUrl":"https://doi.org/10.2140/ant.2024.18.209","url":null,"abstract":"<p>We prove a relative decidability result for perfectoid fields. This applies to show that the fields <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>1</mn><mo>∕</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>∞</mi></mrow></msup>\u0000</mrow></msup><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>∞</mi></mrow></msup></mrow></msub><mo stretchy=\"false\">)</mo></math> are (existentially) decidable relative to the perfect hull of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msubsup></math> is (existentially) decidable relative to the perfect hull of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mover accent=\"false\"><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math>. We also prove some unconditional decidability results in mixed characteristic via reduction to characteristic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"35 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial sums of typical multiplicative functions over short moving intervals 短移动区间上典型乘法函数的部分和
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-06 DOI: 10.2140/ant.2024.18.389
Mayank Pandey, Victor Y. Wang, Max Wenqiang Xu
{"title":"Partial sums of typical multiplicative functions over short moving intervals","authors":"Mayank Pandey, Victor Y. Wang, Max Wenqiang Xu","doi":"10.2140/ant.2024.18.389","DOIUrl":"https://doi.org/10.2140/ant.2024.18.389","url":null,"abstract":"<p>We prove that the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-th positive integer moment of partial sums of Steinhaus random multiplicative functions over the interval <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>x</mi>\u0000<mo>+</mo>\u0000<mi>H</mi><mo stretchy=\"false\">]</mo></math> matches the corresponding Gaussian moment, as long as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi>\u0000<mo>≪</mo>\u0000<mi>x</mi><mo>∕</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>x</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>2</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mo>+</mo><mi>o</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo>\u0000</mrow></msup></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi></math> tends to infinity with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi></math>. We show that properly normalized partial sums of typical multiplicative functions arising from realizations of random multiplicative functions have Gaussian limiting distribution in short moving intervals <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>x</mi>\u0000<mo>+</mo>\u0000<mi>H</mi><mo stretchy=\"false\">]</mo></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi>\u0000<mo>≪</mo>\u0000<mi>X</mi><mo>∕</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>X</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>W</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></mrow></msup></math> tending to infinity with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi></math> is uniformly chosen from <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><mi>X</mi><mo stretchy=\"false\">}</mo></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></math> tends to infinity with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> arbitrarily slowly. This makes some initial progress on a recent question of Harper. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deterministic algorithm for Harder–Narasimhan filtrations for representations of acyclic quivers 无环四元组表示的 Harder-Narasimhan 滤波的确定性算法
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-06 DOI: 10.2140/ant.2024.18.319
Chi-Yu Cheng
{"title":"A deterministic algorithm for Harder–Narasimhan filtrations for representations of acyclic quivers","authors":"Chi-Yu Cheng","doi":"10.2140/ant.2024.18.319","DOIUrl":"https://doi.org/10.2140/ant.2024.18.319","url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math> be a representation of an acyclic quiver <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math> over an infinite field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>. We establish a deterministic algorithm for computing the Harder–Narasimhan filtration of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>. The algorithm is polynomial in the dimensions of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>, the weights that induce the Harder–Narasimhan filtration of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>, and the number of paths in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math>. As a direct application, we also show that when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> is algebraically closed and when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math> is unstable, the same algorithm produces Kempf’s maximally destabilizing one parameter subgroups for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"2 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentially large fields 不同的大场
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-06 DOI: 10.2140/ant.2024.18.249
Omar León Sánchez, Marcus Tressl
{"title":"Differentially large fields","authors":"Omar León Sánchez, Marcus Tressl","doi":"10.2140/ant.2024.18.249","DOIUrl":"https://doi.org/10.2140/ant.2024.18.249","url":null,"abstract":"<p>We introduce the notion of <span>differential largeness </span>for fields equipped with several commuting derivations (as an analogue to largeness of fields). We lay out the foundations of this new class of “tame” differential fields. We state several characterizations and exhibit plenty of examples and applications. Our results strongly indicate that differentially large fields will play a key role in differential field arithmetic. For instance, we characterize differential largeness in terms of being existentially closed in their power series field (furnished with natural derivations), we give explicit constructions of differentially large fields in terms of iterated powers series, we prove that the class of differentially large fields is elementary, and we show that differential largeness is preserved under algebraic extensions, therefore showing that their algebraic closure is differentially closed. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"236 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sur les espaces homogènes de Borovoi–Kunyavskii 论 Borovoi-Kunyavskii 均质空间
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-06 DOI: 10.2140/ant.2024.18.349
Mạnh Linh Nguyễn
{"title":"Sur les espaces homogènes de Borovoi–Kunyavskii","authors":"Mạnh Linh Nguyễn","doi":"10.2140/ant.2024.18.349","DOIUrl":"https://doi.org/10.2140/ant.2024.18.349","url":null,"abstract":"<p>Nous établissons le principe de Hasse et l’approximation faible pour certains espaces homogènes de <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> SL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>m</mi></mrow></msub></math> à stabilisateur géométrique nilpotent de classe 2, construits par Borovoi et Kunyavskii. Ces espaces homogènes vérifient donc une conjecture de Colliot-Thélène concernant l’obstruction de Brauer–Manin pour les variétés géométriquement rationnellement connexes. </p><p> We establish the Hasse principle and the weak approximation property for certain homogeneous spaces of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> SL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>m</mi></mrow></msub></math> whose geometric stabilizer is of nilpotency class 2, which were constructed by Borovoi and Kunyavskii. These homogeneous spaces verify thus a conjecture of Colliot-Thélène on the Brauer–Manin obstruction for geometrically rationally connected varieties. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"4 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projective orbifolds of Nikulin type 尼库林型射影轨道
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2023-11-22 DOI: 10.2140/ant.2024.18.165
Chiara Camere, Alice Garbagnati, Grzegorz Kapustka, Michał Kapustka
{"title":"Projective orbifolds of Nikulin type","authors":"Chiara Camere, Alice Garbagnati, Grzegorz Kapustka, Michał Kapustka","doi":"10.2140/ant.2024.18.165","DOIUrl":"https://doi.org/10.2140/ant.2024.18.165","url":null,"abstract":"<p>We study projective irreducible symplectic orbifolds of dimension four that are deformations of partial resolutions of quotients of hyperkähler manifolds of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><msup><mrow><mn>3</mn></mrow><mrow><mo stretchy=\"false\">[</mo><mn>2</mn><mo stretchy=\"false\">]</mo></mrow></msup></math>-type by symplectic involutions; we call them orbifolds of Nikulin type. We first classify those projective orbifolds that are really quotients, by describing all families of projective fourfolds of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><msup><mrow><mn>3</mn></mrow><mrow><mo stretchy=\"false\">[</mo><mn>2</mn><mo stretchy=\"false\">]</mo></mrow></msup></math>-type with a symplectic involution and the relation with their quotients, and then study their deformations. We compute the Riemann–Roch formula for Weil divisors on orbifolds of Nikulin type and using this we describe the first known locally complete family of singular irreducible symplectic varieties as double covers of special complete intersections <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo stretchy=\"false\">)</mo></math> in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mn>6</mn></mrow></msup></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"20 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Semisimple algebras and PI-invariants of finite dimensional algebras 有限维代数的半单代数与pi不变量
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2023-11-22 DOI: 10.2140/ant.2024.18.133
Eli Aljadeff, Yakov Karasik
{"title":"Semisimple algebras and PI-invariants of finite dimensional algebras","authors":"Eli Aljadeff, Yakov Karasik","doi":"10.2140/ant.2024.18.133","DOIUrl":"https://doi.org/10.2140/ant.2024.18.133","url":null,"abstract":"&lt;p&gt;Let &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/math&gt; be the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mspace width=\"-0.17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;-ideal of identities of an affine PI-algebra over an algebraically closed field &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt; of characteristic zero. Consider the family &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℳ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; of finite dimensional algebras &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\"&gt;Σ&lt;/mi&gt;&lt;/math&gt; with &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt; Id&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;Σ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;\u0000&lt;mo&gt;=&lt;/mo&gt;\u0000&lt;mi&gt;Γ&lt;/mi&gt;&lt;/math&gt;. By Kemer’s theory &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℳ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; is not empty. We show there exists &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;A&lt;/mi&gt;\u0000&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℳ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; with Wedderburn–Malcev decomposition &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;≅&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;⊕&lt;/mo&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;, where &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; is the Jacobson’s radical and &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; is a semisimple supplement with the property that if &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;≅&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;⊕&lt;/mo&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℳ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; then &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; is a direct summand of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;. In particular &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; is unique minimal, thus an invariant of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/math&gt;","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"19 26","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A weighted one-level density of families of L-functions l -函数族的加权一级密度
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2023-11-22 DOI: 10.2140/ant.2024.18.87
Alessandro Fazzari
{"title":"A weighted one-level density of families of L-functions","authors":"Alessandro Fazzari","doi":"10.2140/ant.2024.18.87","DOIUrl":"https://doi.org/10.2140/ant.2024.18.87","url":null,"abstract":"<p>This paper is devoted to a weighted version of the one-level density of the nontrivial zeros of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions, tilted by a power of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-function evaluated at the central point. Assuming the Riemann hypothesis and the ratio conjecture, for some specific families of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions, we prove that the same structure suggested by the density conjecture also holds in this weighted investigation, if the exponent of the weight is small enough. Moreover, we speculate about the general case, conjecturing explicit formulae for the weighted kernels. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"19 25","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Degree growth for tame automorphisms of an affine quadric threefold 仿射二次三次矩阵驯服自同构的度增长
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2023-11-22 DOI: 10.2140/ant.2024.18.1
Nguyen-Bac Dang
{"title":"Degree growth for tame automorphisms of an affine quadric threefold","authors":"Nguyen-Bac Dang","doi":"10.2140/ant.2024.18.1","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1","url":null,"abstract":"<p>We consider the degree sequences of the tame automorphisms preserving an affine quadric threefold. Using some valuative estimates derived from the work of Shestakov and Umirbaev and the action of this group on a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> CAT</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo></math>, Gromov-hyperbolic square complex constructed by Bisi, Furter and Lamy, we prove that the dynamical degrees of tame elements avoid any value strictly between 1 and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>4</mn></mrow>\u0000<mrow><mn>3</mn></mrow></mfrac></math>. As an application, these methods allow us to characterize when the growth exponent of the degree of a random product of finitely many tame automorphisms is positive. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"19 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower 关于斜阿贝尔Iwasawa塔中Frobenius特征值的变化
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2023-10-08 DOI: 10.2140/ant.2023.17.2151
Asvin G.
{"title":"On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower","authors":"Asvin G.","doi":"10.2140/ant.2023.17.2151","DOIUrl":"https://doi.org/10.2140/ant.2023.17.2151","url":null,"abstract":"<p>We study towers of varieties over a finite field such as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup>\u0000<mo>=</mo>\u0000<mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>n</mi></mrow></msup>\u0000</mrow></msup><mo stretchy=\"false\">)</mo></math> and prove that the characteristic polynomials of the Frobenius on the étale cohomology show a surprising <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-adic convergence. We prove this by proving a more general statement about the convergence of certain invariants related to a skew-abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices. Along the way, we will prove that many natural sequences of polynomials <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub>\u0000<mo>∈</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>ℕ</mi></mrow></msup></math> converge <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-adically and give explicit rates of convergence. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"11 20","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71493546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信