Algebra & Number Theory最新文献

筛选
英文 中文
Functorial embedded resolution via weighted blowings up 通过加权吹胀的函数式嵌入解析
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-09-18 DOI: 10.2140/ant.2024.18.1557
Dan Abramovich, Michael Temkin, Jarosław Włodarczyk
{"title":"Functorial embedded resolution via weighted blowings up","authors":"Dan Abramovich, Michael Temkin, Jarosław Włodarczyk","doi":"10.2140/ant.2024.18.1557","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1557","url":null,"abstract":"<p>We provide a simple procedure for resolving, in characteristic 0, singularities of a variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> embedded in a smooth variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Y</mi> </math> by repeatedly blowing up the worst singularities, in the sense of stack-theoretic weighted blowings up. No history, no exceptional divisors, and no logarithmic structures are necessary to carry this out; the steps are explicit geometric operations requiring no choices; and the resulting algorithm is efficient. </p><p> A similar result was discovered independently by McQuillan (2020). </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"15 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptional characters and prime numbers in sparse sets 稀疏集合中的异常字符和素数
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1305
Jori Merikoski
{"title":"Exceptional characters and prime numbers in sparse sets","authors":"Jori Merikoski","doi":"10.2140/ant.2024.18.1305","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1305","url":null,"abstract":"<p>We develop a lower bound sieve for primes under the (unlikely) assumption of infinitely many exceptional characters. Compared with the illusory sieve due to Friedlander and Iwaniec which produces asymptotic formulas, we show that less arithmetic information is required to prove nontrivial lower bounds. As an application of our method, assuming the existence of infinitely many exceptional characters we show that there are infinitely many primes of the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup>\u0000<mo>+</mo> <msup><mrow><mi>b</mi></mrow><mrow><mn>8</mn></mrow></msup></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"21 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Igusa’s conjectures on exponential sums and monodromy with semicontinuity of the minimal exponent 将 Igusa 关于指数和与单色性的猜想与最小指数的半连续性相结合
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1275
Raf Cluckers, Kien Huu Nguyen
{"title":"Combining Igusa’s conjectures on exponential sums and monodromy with semicontinuity of the minimal exponent","authors":"Raf Cluckers, Kien Huu Nguyen","doi":"10.2140/ant.2024.18.1275","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1275","url":null,"abstract":"<p>We combine two of Igusa’s conjectures with recent semicontinuity results by Mustaţă and Popa to form a new, natural conjecture about bounds for exponential sums. These bounds have a deceivingly simple and general formulation in terms of degrees and dimensions only. We provide evidence consisting partly of adaptations of already known results about Igusa’s conjecture on exponential sums, but also some new evidence like for all polynomials in up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn></math> variables. We show that, in turn, these bounds imply consequences for Igusa’s (strong) monodromy conjecture. The bounds are related to estimates for major arcs appearing in the circle method for local-global principles. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"59 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal subgroups of exceptional groups and Quillen’s dimension 特殊群的最大子群和奎伦维度
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1375
Kevin I. Piterman
{"title":"Maximal subgroups of exceptional groups and Quillen’s dimension","authors":"Kevin I. Piterman","doi":"10.2140/ant.2024.18.1375","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1375","url":null,"abstract":"&lt;p&gt;Given a finite group &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt; and a prime &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;, let &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"bold-script\"&gt;𝒜&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mspace width=\"-0.17em\"&gt;&lt;/mspace&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; be the poset of nontrivial elementary abelian &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;-subgroups of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;. The group &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt; satisfies the Quillen dimension property at &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt; if &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"bold-script\"&gt;𝒜&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mspace width=\"-0.17em\"&gt;&lt;/mspace&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; has nonzero homology in the maximal possible degree, which is the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;-rank of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt; minus &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;. For example, D. Quillen showed that solvable groups with trivial &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;-core satisfy this property, and later, M. Aschbacher and S. D. Smith provided a list of all &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;-extensions of simple groups that may fail this property if &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt; is odd. In particular, a group &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt; with this property satisfies Quillen’s conjecture: &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt; has trivial &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;-core and the poset &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"bold-script\"&gt;𝒜&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mspace width=\"-0.17em\"&gt;&lt;/mspace&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; is not contractible. &lt;/p&gt;&lt;p&gt; In this article, we focus on the prime &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;\u0000&lt;mo&gt;=&lt;/mo&gt; &lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt; and prove that the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;-extensions of finite simple groups of exceptional Lie type in odd characteristic satisfy the Quillen dimension property, wit","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"21 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serre weights for three-dimensional wildly ramified Galois representations 三维野生斜切伽罗瓦表示的塞尔权重
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1221
Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra
{"title":"Serre weights for three-dimensional wildly ramified Galois representations","authors":"Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra","doi":"10.2140/ant.2024.18.1221","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1221","url":null,"abstract":"<p>We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> Galois representations under a genericity condition when the field is unramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. This removes the assumption made previously that the representation be tamely ramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. We also prove a version of Breuil’s lattice conjecture and a mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> multiplicity one result for the cohomology of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math>-arithmetic manifolds. The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced previously (2023). </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"28 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyhedral and tropical geometry of flag positroids 旗正多面体的多面体几何和热带几何
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1333
Jonathan Boretsky, Christopher Eur, Lauren Williams
{"title":"Polyhedral and tropical geometry of flag positroids","authors":"Jonathan Boretsky, Christopher Eur, Lauren Williams","doi":"10.2140/ant.2024.18.1333","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1333","url":null,"abstract":"&lt;p&gt;A &lt;span&gt;flag positroid &lt;/span&gt;of ranks &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;\u0000&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;\u0000&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;&lt;&lt;/mo&gt;\u0000&lt;mo&gt;⋯&lt;/mo&gt;\u0000&lt;mo&gt;&lt;&lt;/mo&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; on &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;/math&gt; is a flag matroid that can be realized by a real &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;×&lt;/mo&gt;\u0000&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt; matrix &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt; such that the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;×&lt;/mo&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; minors of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt; involving rows &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;…&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; are nonnegative for all &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;1&lt;/mn&gt;\u0000&lt;mo&gt;≤&lt;/mo&gt;\u0000&lt;mi&gt;i&lt;/mi&gt;\u0000&lt;mo&gt;≤&lt;/mo&gt;\u0000&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;. In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly when &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;\u0000&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;\u0000&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;\u0000&lt;mo&gt;+&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;…&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; is a sequence of consecutive numbers. In this case we show that the nonnegative tropical flag variety &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt; TrFl&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt; equals the nonnegative flag Dressian &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt; FlDr&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;, and that the points &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;μ&lt;/mi&gt;\u0000&lt;mo&gt;=&lt;/mo&gt;\u0000&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;…&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the p-adic interpolation of unitary Friedberg–Jacquet periods 论单位弗里德伯格-雅克特周期的 p-adic 插值法
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1117
Andrew Graham
{"title":"On the p-adic interpolation of unitary Friedberg–Jacquet periods","authors":"Andrew Graham","doi":"10.2140/ant.2024.18.1117","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1117","url":null,"abstract":"<p>We establish functoriality of higher Coleman theory for certain unitary Shimura varieties and use this to construct a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic analytic function interpolating unitary Friedberg–Jacquet periods. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"19 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined height pairing 精致的高度搭配
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1039
Bruno Kahn
{"title":"Refined height pairing","authors":"Bruno Kahn","doi":"10.2140/ant.2024.18.1039","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1039","url":null,"abstract":"&lt;p&gt;For a &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;-dimensional regular proper variety &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt; over the function field of a smooth variety &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt; over a field &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt; and for &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;i&lt;/mi&gt;\u0000&lt;mo&gt;≥&lt;/mo&gt; &lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;, we define a subgroup &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt; of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; and construct a “refined height pairing” &lt;/p&gt;\u0000&lt;div&gt;&lt;math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;\u0000&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;\u0000&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;\u0000&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;\u0000&lt;/math&gt;\u0000&lt;/div&gt;\u0000&lt;p&gt; in the category of abelian groups up to isogeny. For &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;i&lt;/mi&gt;\u0000&lt;mo&gt;=&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;, &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt; is the group of cycles numerically equivalent to &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;. This pairing relates to pairings defined by P. Schneider and A. Beilinson if &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt; is a curve, to a refined height defined by ","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"70 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enumeration of conjugacy classes in affine groups 仿射群中共轭类的枚举
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1189
Jason Fulman, Robert M. Guralnick
{"title":"Enumeration of conjugacy classes in affine groups","authors":"Jason Fulman, Robert M. Guralnick","doi":"10.2140/ant.2024.18.1189","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1189","url":null,"abstract":"<p>We study the conjugacy classes of the classical affine groups. We derive generating functions for the number of classes analogous to formulas of Wall and the authors for the classical groups. We use these to get good upper bounds for the number of classes. These naturally come up as difficult cases in the study of the noncoprime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mi>V</mi>\u0000<mo stretchy=\"false\">)</mo></math> problem of Brauer. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balmer spectra and Drinfeld centers 巴尔默光谱和德林菲尔德中心
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1081
Kent B. Vashaw
{"title":"Balmer spectra and Drinfeld centers","authors":"Kent B. Vashaw","doi":"10.2140/ant.2024.18.1081","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1081","url":null,"abstract":"<p>The Balmer spectrum of a monoidal triangulated category is an important geometric construction which is closely related to the problem of classifying thick tensor ideals. We prove that the forgetful functor from the Drinfeld center of a finite tensor category <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>C</mi></mstyle></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>C</mi></mstyle></math> extends to a monoidal triangulated functor between their corresponding stable categories, and induces a continuous map between their Balmer spectra. We give conditions under which it is injective, surjective, or a homeomorphism. We apply this general theory to prove that Balmer spectra associated to finite-dimensional cosemisimple quasitriangular Hopf algebras (in particular, group algebras in characteristic dividing the order of the group) coincide with the Balmer spectra associated to their Drinfeld doubles, and that the thick ideals of both categories are in bijection. An analogous theorem is proven for certain Benson–Witherspoon smash coproduct Hopf algebras, which are not quasitriangular in general. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"58 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信