Algebra & Number Theory最新文献

筛选
英文 中文
On Ozaki’s theorem realizing prescribed p-groups as p-class tower groups 论尾崎定理将规定 p 群变为 p 类塔群
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-26 DOI: 10.2140/ant.2024.18.771
Farshid Hajir, Christian Maire, Ravi Ramakrishna
{"title":"On Ozaki’s theorem realizing prescribed p-groups as p-class tower groups","authors":"Farshid Hajir, Christian Maire, Ravi Ramakrishna","doi":"10.2140/ant.2024.18.771","DOIUrl":"https://doi.org/10.2140/ant.2024.18.771","url":null,"abstract":"<p>We give a streamlined and effective proof of Ozaki’s theorem that any finite <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Γ</mi></math> is the Galois group of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-Hilbert class field tower of some number field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> F</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></math>. Our work is inspired by Ozaki’s and applies in broader circumstances. While his theorem is in the totally complex setting, we obtain the result in any mixed signature setting for which there exists a number field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>0</mn></mrow></msub></math> with class number prime to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. We construct <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> F</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo>∕</mo><msub><mrow><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>0</mn></mrow></msub></math> by a sequence of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo>∕</mo><mi>p</mi></math>-extensions ramified only at finite tame primes and also give explicit bounds on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mi>F</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits-->\u0000<mo>:</mo><msub><mrow><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">]</mo></math> and the number of ramified primes of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> F</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo>∕</mo><msub><mrow><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>0</mn></mrow></msub></math> in terms of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>#</mi><mi>Γ</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"142 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wide moments of L-functions I : Twists by class group characters of imaginary quadratic fields L 函数的宽矩 I:虚二次域类群特征的扭转
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-26 DOI: 10.2140/ant.2024.18.735
Asbjørn Christian Nordentoft
{"title":"Wide moments of L-functions I : Twists by class group characters of imaginary quadratic fields","authors":"Asbjørn Christian Nordentoft","doi":"10.2140/ant.2024.18.735","DOIUrl":"https://doi.org/10.2140/ant.2024.18.735","url":null,"abstract":"<p>We calculate certain “wide moments” of central values of Rankin–Selberg <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><mrow><mo fence=\"true\" mathsize=\"1.19em\">(</mo><mrow><mi>π</mi>\u0000<mo>⊗</mo><mi mathvariant=\"normal\">Ω</mi><mo>,</mo> <mfrac><mrow><mn>1</mn></mrow>\u0000<mrow><mn>2</mn></mrow></mfrac></mrow><mo fence=\"true\" mathsize=\"1.19em\">)</mo></mrow></math> where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> is a cuspidal automorphic representation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>2</mn></mrow></msub></math> over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> is a Hecke character (of conductor <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>) of an imaginary quadratic field. This moment calculation is applied to obtain “weak simultaneous” nonvanishing results, which are nonvanishing results for different Rankin–Selberg <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions where the product of the twists is trivial. </p><p> The proof relies on relating the wide moments of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions to the usual moments of automorphic forms evaluated at Heegner points using Waldspurger’s formula. To achieve this, a classical version of Waldspurger’s formula for general weight automorphic forms is derived, which might be of independent interest. A key input is equidistribution of Heegner points (with explicit error terms), together with nonvanishing results for certain period integrals. In particular, we develop a soft technique for obtaining the nonvanishing of triple convolution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitesimal dilogarithm on curves over truncated polynomial rings 截断多项式环上曲线的无穷小稀疏算术
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-26 DOI: 10.2140/ant.2024.18.685
Sinan Ünver
{"title":"Infinitesimal dilogarithm on curves over truncated polynomial rings","authors":"Sinan Ünver","doi":"10.2140/ant.2024.18.685","DOIUrl":"https://doi.org/10.2140/ant.2024.18.685","url":null,"abstract":"<p>We construct infinitesimal invariants of thickened one dimensional cycles in three dimensional space, which are the simplest cycles that are not in the Milnor range. This generalizes Park’s work on the regulators of additive cycles. The construction also allows us to prove the infinitesimal version of the strong reciprocity conjecture for thickenings of all orders. Classical analogs of our invariants are based on the dilogarithm function and our invariant could be seen as their infinitesimal version. Despite this analogy, the infinitesimal version cannot be obtained from their classical counterparts through a limiting process. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"17 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundamental exact sequence for the pro-étale fundamental group 原基本群的基本精确序列
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-26 DOI: 10.2140/ant.2024.18.631
Marcin Lara
{"title":"Fundamental exact sequence for the pro-étale fundamental group","authors":"Marcin Lara","doi":"10.2140/ant.2024.18.631","DOIUrl":"https://doi.org/10.2140/ant.2024.18.631","url":null,"abstract":"<p>The pro-étale fundamental group of a scheme, introduced by Bhatt and Scholze, generalizes formerly known fundamental groups — the usual étale fundamental group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> ét</mtext><!--/mstyle--></mrow></msubsup></math> defined in SGA1 and the more general <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>SGA3</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow></msubsup></math>. It controls local systems in the pro-étale topology and leads to an interesting class of “geometric coverings” of schemes, generalizing finite étale coverings. </p><p> We prove exactness of the fundamental sequence for the pro-étale fundamental group of a geometrically connected scheme <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> of finite type over a field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>, i.e., that the sequence </p>\u0000<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\u0000<mn>1</mn>\u0000<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><msub><mrow><mi>X</mi></mrow><mrow><mover accent=\"true\"><mrow>\u0000<mi>k</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub><mo stretchy=\"false\">)</mo>\u0000<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo>\u0000<mo>→</mo><msub><mrow><mi> Gal</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow>\u0000<mi>k</mi></mrow></msub>\u0000<mo>→</mo> <mn>1</mn>\u0000</math>\u0000</div>\u0000<p> is exact as abstract groups and the map <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><msub><mrow><mi>X</mi></mrow><mrow><mover accent=\"true\"><mrow><mi>k</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub><mo stretchy=\"false\">)</mo>\u0000<mo>→</mo> <msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><!--mstyle--><mtext> proét</mtext><!--/mstyle--></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></math> is a topological embedding. </p><p> On the way, we prove a general van Kampen theorem and the Künneth formula for the pro-étale fundamental group. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"30 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supersolvable descent for rational points 有理点的超解下降
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-26 DOI: 10.2140/ant.2024.18.787
Yonatan Harpaz, Olivier Wittenberg
{"title":"Supersolvable descent for rational points","authors":"Yonatan Harpaz, Olivier Wittenberg","doi":"10.2140/ant.2024.18.787","DOIUrl":"https://doi.org/10.2140/ant.2024.18.787","url":null,"abstract":"<p>We construct an analogue of the classical descent theory of Colliot-Thélène and Sansuc in which algebraic tori are replaced with finite supersolvable groups. As an application, we show that rational points are dense in the Brauer–Manin set for smooth compactifications of certain quotients of homogeneous spaces by finite supersolvable groups. For suitably chosen homogeneous spaces, this implies the existence of supersolvable Galois extensions of number fields with prescribed norms, generalising work of Frei, Loughran and Newton. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"57 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Kato and Kuzumaki’s properties for the Milnor K2 of function fields of p-adic curves 论加藤和久住明关于 p-adic 曲线函数场的米尔诺 K2 的性质
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-26 DOI: 10.2140/ant.2024.18.815
Diego Izquierdo, Giancarlo Lucchini Arteche
{"title":"On Kato and Kuzumaki’s properties for the Milnor K2 of function fields of p-adic curves","authors":"Diego Izquierdo, Giancarlo Lucchini Arteche","doi":"10.2140/ant.2024.18.815","DOIUrl":"https://doi.org/10.2140/ant.2024.18.815","url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> be the function field of a curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> over a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>. We prove that, for each <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi><mo>,</mo><mi>d</mi>\u0000<mo>≥</mo> <mn>1</mn></math> and for each hypersurface <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math> in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>ℙ</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math> of degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup>\u0000<mo>≤</mo>\u0000<mi>n</mi></math>, the second Milnor <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>-theory group of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> is spanned by the images of the norms coming from finite extensions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> over which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math> has a rational point. When the curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> has a point in the maximal unramified extension of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>, we generalize this result to hypersurfaces <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math> in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>ℙ</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math> of degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\u0000<mo>≤</mo>\u0000<mi>n</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"135 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A categorical Künneth formula for constructible Weil sheaves 可构造魏尔卷的库奈特分类公式
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-16 DOI: 10.2140/ant.2024.18.499
Tamir Hemo, Timo Richarz, Jakob Scholbach
{"title":"A categorical Künneth formula for constructible Weil sheaves","authors":"Tamir Hemo, Timo Richarz, Jakob Scholbach","doi":"10.2140/ant.2024.18.499","DOIUrl":"https://doi.org/10.2140/ant.2024.18.499","url":null,"abstract":"<p>We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\u0000<mo>&gt;</mo> <mn>0</mn></math> for various coefficients, including finite discrete rings, algebraic field extensions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\u0000<mo>⊃</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math>, and their rings of integers <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math>. We also consider a variant for ind-constructible sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quotients of admissible formal schemes and adic spaces by finite groups 有限群的可容许形式方案和 adic 空间的商
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-16 DOI: 10.2140/ant.2024.18.409
Bogdan Zavyalov
{"title":"Quotients of admissible formal schemes and adic spaces by finite groups","authors":"Bogdan Zavyalov","doi":"10.2140/ant.2024.18.409","DOIUrl":"https://doi.org/10.2140/ant.2024.18.409","url":null,"abstract":"<p>We give a self-contained treatment of finite group quotients of admissible (formal) schemes and adic spaces that are locally topologically finite type over a locally strongly noetherian adic space. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"185 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subconvexity bound for GL(3) × GL(2) L-functions : Hybrid level aspect GL(3) × GL(2) L 函数的次凸性约束:混合级方面
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-16 DOI: 10.2140/ant.2024.18.477
Sumit Kumar, Ritabrata Munshi, Saurabh Kumar Singh
{"title":"Subconvexity bound for GL(3) × GL(2) L-functions : Hybrid level aspect","authors":"Sumit Kumar, Ritabrata Munshi, Saurabh Kumar Singh","doi":"10.2140/ant.2024.18.477","DOIUrl":"https://doi.org/10.2140/ant.2024.18.477","url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> be a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math> Hecke–Maass cusp form of prime level <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math> and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> be a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> Hecke–Maass cuspform of prime level <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math>. We will prove a subconvex bound for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo>\u0000<mo>×</mo><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> Rankin–Selberg <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-function <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo>,</mo><mi>F</mi>\u0000<mo>×</mo>\u0000<mi>f</mi><mo stretchy=\"false\">)</mo></math> in the level aspect for certain ranges of the parameters <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"185 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Igusa functions and ideal growth in nilpotent Lie rings 广义易古萨函数和零potent Lie rings 中的理想增长
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-02-16 DOI: 10.2140/ant.2024.18.537
Angela Carnevale, Michael M. Schein, Christopher Voll
{"title":"Generalized Igusa functions and ideal growth in nilpotent Lie rings","authors":"Angela Carnevale, Michael M. Schein, Christopher Voll","doi":"10.2140/ant.2024.18.537","DOIUrl":"https://doi.org/10.2140/ant.2024.18.537","url":null,"abstract":"<p>We introduce a new class of combinatorially defined rational functions and apply them to deduce explicit formulae for local ideal zeta functions associated to the members of a large class of nilpotent Lie rings which contains the free class-2-nilpotent Lie rings and is stable under direct products. Our results unify and generalize a substantial number of previous computations. We show that the new rational functions, and thus also the local zeta functions under consideration, enjoy a self-reciprocity property, expressed in terms of a functional equation upon inversion of variables. We establish a conjecture of Grunewald, Segal, and Smith on the uniformity of normal zeta functions of finitely generated free class-2-nilpotent groups. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"232 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信