{"title":"色度准对称函数的单能实现","authors":"Lucas Gagnon","doi":"10.2140/ant.2024.18.1737","DOIUrl":null,"url":null,"abstract":"<p>We realize two families of combinatorial symmetric functions via the complex character theory of the finite general linear group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>: chromatic quasisymmetric functions and vertical strip LLT polynomials. The associated <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> characters are elementary in nature and can be obtained by induction from certain well-behaved characters of the unipotent upper triangular groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> UT</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. The proof of these results also gives a general Hopf algebraic approach to computing the induction map. Additional results include a connection between the relevant <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> characters and Hessenberg varieties and a reinterpretation of known theorems and conjectures about the relevant symmetric functions in terms of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"112 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unipotent realization of the chromatic quasisymmetric function\",\"authors\":\"Lucas Gagnon\",\"doi\":\"10.2140/ant.2024.18.1737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We realize two families of combinatorial symmetric functions via the complex character theory of the finite general linear group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>: chromatic quasisymmetric functions and vertical strip LLT polynomials. The associated <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> characters are elementary in nature and can be obtained by induction from certain well-behaved characters of the unipotent upper triangular groups <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> UT</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>. The proof of these results also gives a general Hopf algebraic approach to computing the induction map. Additional results include a connection between the relevant <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> characters and Hessenberg varieties and a reinterpretation of known theorems and conjectures about the relevant symmetric functions in terms of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1737\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1737","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A unipotent realization of the chromatic quasisymmetric function
We realize two families of combinatorial symmetric functions via the complex character theory of the finite general linear group : chromatic quasisymmetric functions and vertical strip LLT polynomials. The associated characters are elementary in nature and can be obtained by induction from certain well-behaved characters of the unipotent upper triangular groups . The proof of these results also gives a general Hopf algebraic approach to computing the induction map. Additional results include a connection between the relevant characters and Hessenberg varieties and a reinterpretation of known theorems and conjectures about the relevant symmetric functions in terms of .
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.