色度准对称函数的单能实现

IF 0.9 1区 数学 Q2 MATHEMATICS
Lucas Gagnon
{"title":"色度准对称函数的单能实现","authors":"Lucas Gagnon","doi":"10.2140/ant.2024.18.1737","DOIUrl":null,"url":null,"abstract":"<p>We realize two families of combinatorial symmetric functions via the complex character theory of the finite general linear group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>: chromatic quasisymmetric functions and vertical strip LLT polynomials. The associated <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> characters are elementary in nature and can be obtained by induction from certain well-behaved characters of the unipotent upper triangular groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> UT</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. The proof of these results also gives a general Hopf algebraic approach to computing the induction map. Additional results include a connection between the relevant <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> characters and Hessenberg varieties and a reinterpretation of known theorems and conjectures about the relevant symmetric functions in terms of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"112 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unipotent realization of the chromatic quasisymmetric function\",\"authors\":\"Lucas Gagnon\",\"doi\":\"10.2140/ant.2024.18.1737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We realize two families of combinatorial symmetric functions via the complex character theory of the finite general linear group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>: chromatic quasisymmetric functions and vertical strip LLT polynomials. The associated <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> characters are elementary in nature and can be obtained by induction from certain well-behaved characters of the unipotent upper triangular groups <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> UT</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>. The proof of these results also gives a general Hopf algebraic approach to computing the induction map. Additional results include a connection between the relevant <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> characters and Hessenberg varieties and a reinterpretation of known theorems and conjectures about the relevant symmetric functions in terms of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1737\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1737","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过有限一般线性群 GL n(𝔽q) 的复特征理论实现了两个组合对称函数族:色度准对称函数和垂直条带 LLT 多项式。相关的 GL n(𝔽q) 字符本质上是基本的,可以通过归纳从单向上三角群 UT n(𝔽q) 的某些良好字符得到。这些结果的证明还给出了计算归纳映射的一般霍普夫代数方法。其他结果包括相关 GL n(𝔽q) 字符与海森伯变体之间的联系,以及用 GL n(𝔽q) 重新解释有关对称函数的已知定理和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unipotent realization of the chromatic quasisymmetric function

We realize two families of combinatorial symmetric functions via the complex character theory of the finite general linear group GL n(𝔽q): chromatic quasisymmetric functions and vertical strip LLT polynomials. The associated GL n(𝔽q) characters are elementary in nature and can be obtained by induction from certain well-behaved characters of the unipotent upper triangular groups UT n(𝔽q). The proof of these results also gives a general Hopf algebraic approach to computing the induction map. Additional results include a connection between the relevant GL n(𝔽q) characters and Hessenberg varieties and a reinterpretation of known theorems and conjectures about the relevant symmetric functions in terms of GL n(𝔽q).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信