Algebra & Number Theory最新文献

筛选
英文 中文
Sym-Noetherianity for powers of GL-varieties gl -变种幂的对称- noether性
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-14 DOI: 10.2140/ant.2025.19.2091
Christopher H. Chiu, Alessandro Danelon, Jan Draisma, Rob H. Eggermont, Azhar Farooq
{"title":"Sym-Noetherianity for powers of GL-varieties","authors":"Christopher H. Chiu, Alessandro Danelon, Jan Draisma, Rob H. Eggermont, Azhar Farooq","doi":"10.2140/ant.2025.19.2091","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2091","url":null,"abstract":"<p>Much recent literature concerns finiteness properties of infinite-dimensional algebraic varieties equipped with an action of the infinite symmetric group, or of the infinite general linear group. In this paper, we study a common generalisation in which the product of both groups acts on infinite-dimensional spaces, and we show that these spaces are topologically Noetherian with respect to this action. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"35 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the boundedness of canonical models 关于规范模型的有界性
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-14 DOI: 10.2140/ant.2025.19.2119
Junpeng Jiao
{"title":"On the boundedness of canonical models","authors":"Junpeng Jiao","doi":"10.2140/ant.2025.19.2119","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2119","url":null,"abstract":"<p>It is conjectured that the canonical models of varieties (not of general type) are bounded when the Iitaka volume is fixed. We confirm this conjecture when a general fiber of the corresponding Iitaka fibration is in a fixed bounded family of polarized log Calabi–Yau pairs. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"29 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Points of bounded height on certain subvarieties of toric varieties 环面变种的某些子变种上有界高度的点
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-14 DOI: 10.2140/ant.2025.19.2281
Marta Pieropan, Damaris Schindler
{"title":"Points of bounded height on certain subvarieties of toric varieties","authors":"Marta Pieropan, Damaris Schindler","doi":"10.2140/ant.2025.19.2281","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2281","url":null,"abstract":"<p>We combine the split torsor method and the hyperbola method for toric varieties to count rational points and Campana points of bounded height on certain subvarieties of toric varieties. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"34 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry of PCF parameters in spaces of quadratic polynomials 二次多项式空间中PCF参数的几何
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-14 DOI: 10.2140/ant.2025.19.2163
Laura DeMarco, Niki Myrto Mavraki
{"title":"Geometry of PCF parameters in spaces of quadratic polynomials","authors":"Laura DeMarco, Niki Myrto Mavraki","doi":"10.2140/ant.2025.19.2163","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2163","url":null,"abstract":"<p>We study algebraic relations among postcritically finite (PCF) parameters in the family <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>f</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>z</mi><mo stretchy=\"false\">)</mo>\u0000<mo>=</mo> <msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup>\u0000<mo>+</mo>\u0000<mi>c</mi></math>. It is known that an algebraic curve in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> contains infinitely many PCF pairs <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math> if and only if the curve is special (i.e., the curve is a vertical or horizontal line through a PCF parameter, or the curve is the diagonal). Here we extend this result to subvarieties of arbitrary dimension in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> for any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\u0000<mo>≥</mo> <mn>2</mn></math>. Consequently, we obtain uniform bounds on the number of PCF pairs on nonspecial curves in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> and the number of PCF parameters in real algebraic curves in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℂ</mi></math>, depending only on the degree of the curve. We also compute the optimal bound for the general curve of degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\u0000<mo>=</mo> <mn>1</mn></math>, we prove that there are only finitely many nonspecial lines in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> containing more than two PCF pairs, and similarly, that there are only finitely many (real) lines in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℂ</mi>\u0000<mo>=</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> containing more than two PCF parameters. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"9 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An asymptotic orthogonality relation for GL(n, ℝ) GL(n, l)的渐近正交关系
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-14 DOI: 10.2140/ant.2025.19.2185
Dorian Goldfeld, Eric Stade, Michael Woodbury
{"title":"An asymptotic orthogonality relation for GL(n, ℝ)","authors":"Dorian Goldfeld, Eric Stade, Michael Woodbury","doi":"10.2140/ant.2025.19.2185","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2185","url":null,"abstract":"<p>Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Asymptotic orthogonality relations for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math>, with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\u0000<mo>≤</mo> <mn>3</mn></math>, and applications to number theory, have been considered by various researchers over the last 45 years. Recently, the authors of the present work have derived an explicit asymptotic orthogonality relation, with a power savings error term, for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>4</mn><mo>,</mo>\u0000<mi>ℝ</mi><mo stretchy=\"false\">)</mo></math>. Here we extend those results to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo>\u0000<mi>ℝ</mi><mo stretchy=\"false\">)</mo></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\u0000<mo>≥</mo> <mn>2</mn></math>. </p><p> For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\u0000<mo>≤</mo> <mn>5</mn></math>, our results are contingent on the Ramanujan conjecture at the infinite place, but otherwise are unconditional. In particular, the case <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\u0000<mo>=</mo> <mn>5</mn></math> represents a new result. The key new ingredient for the proof of the case <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\u0000<mo>=</mo> <mn>5</mn></math> is the theorem of Kim and Shahidi that functorial products of cusp forms on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo>\u0000<mo>×</mo><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math> are automorphic on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>6</mn><mo stretchy=\"false\">)</mo></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\u0000<mo>&gt;</mo> <mn>5</mn></math> (assuming again the Raman","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the equivalence between the effective adjunction conjectures of Prokhorov–Shokurov and of Li Prokhorov-Shokurov的有效附加猜想与Li的等效性
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-14 DOI: 10.2140/ant.2025.19.2261
Jingjun Han, Jihao Liu, Qingyuan Xue
{"title":"On the equivalence between the effective adjunction conjectures of Prokhorov–Shokurov and of Li","authors":"Jingjun Han, Jihao Liu, Qingyuan Xue","doi":"10.2140/ant.2025.19.2261","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2261","url":null,"abstract":"<p>Prokhorov and Shokurov introduced the effective adjunction conjecture, also known as the effective basepoint-freeness conjecture, which asserts that the moduli component of an lc-trivial fibration is effectively basepoint-free. Li proposed a variation of this conjecture, known as the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Γ</mi></math>-effective adjunction conjecture, and demonstrated that a weaker version of his conjecture follows from the original Prokhorov–Shokurov conjecture. </p><p> In this paper, we prove the equivalence between Prokhorov–Shokurov’s and Li’s effective adjunction conjectures. The key to our proof is establishing uniform rational polytopes for canonical bundle formulas. This relies on recent advancements in the minimal model program theory of algebraically integrable foliations, primarily developed by Ambro–Cascini–Shokurov–Spicer and Chen–Han–Liu–Xie. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"38 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paucity of rational points on fibrations with multiple fibres 具有多个纤维的纤维上缺乏有理点
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-05 DOI: 10.2140/ant.2025.19.2049
Tim Browning, Julian Lyczak, Arne Smeets
{"title":"Paucity of rational points on fibrations with multiple fibres","authors":"Tim Browning, Julian Lyczak, Arne Smeets","doi":"10.2140/ant.2025.19.2049","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2049","url":null,"abstract":"<p>Given a family of varieties over the projective line, we study the density of fibres that are everywhere locally soluble in the case that components of higher multiplicity are allowed. We use log geometry to formulate a new sparsity criterion for the existence of everywhere locally soluble fibres and formulate new conjectures that generalise previous work of Loughran and Smeets. These conjectures involve geometric invariants of the associated multiplicity orbifolds on the base of the fibration in the spirit of Campana. We give evidence for the conjectures by providing an assortment of bounds using Chebotarev’s theorem and sieve methods, with most of the evidence involving upper bounds. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"24 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145002871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affine Deligne–Lusztig varieties via the double Bruhat graph, II : Iwahori–Hecke algebra 通过重Bruhat图的仿射delign - lusztig变分,II: Iwahori-Hecke代数
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-05 DOI: 10.2140/ant.2025.19.2015
Felix Schremmer
{"title":"Affine Deligne–Lusztig varieties via the double Bruhat graph, II : Iwahori–Hecke algebra","authors":"Felix Schremmer","doi":"10.2140/ant.2025.19.2015","DOIUrl":"https://doi.org/10.2140/ant.2025.19.2015","url":null,"abstract":"<p>We introduce a new language to describe the geometry of affine Deligne–Lusztig varieties in affine flag varieties. This second part of a two-paper series uses this new language, i.e., the double Bruhat graph, to describe certain structure constants of the Iwahori–Hecke algebra. As an application, we describe nonemptiness and dimension of affine Deligne–Lusztig varieties for most elements of the affine Weyl group and arbitrary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>σ</mi></math>-conjugacy classes. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"111 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145002870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth numbers are orthogonal to nilsequences 光滑数与零序列正交
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-05 DOI: 10.2140/ant.2025.19.1881
Lilian Matthiesen, Mengdi Wang
{"title":"Smooth numbers are orthogonal to nilsequences","authors":"Lilian Matthiesen, Mengdi Wang","doi":"10.2140/ant.2025.19.1881","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1881","url":null,"abstract":"<p>The aim of this paper is to study distributional properties of integers without large or small prime factors. Define an integer to be <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth if all of its prime factors belong to the interval <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>. We identify suitable weights <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math> for the characteristic function of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth numbers that allow us to establish strong asymptotic results on their distribution in short arithmetic progressions. Building on these equidistribution properties, we show that (a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>-tricked version of) the function <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo>\u0000<mo>−</mo> <mn>1</mn></math> is orthogonal to nilsequences. Our results apply in the almost optimal range <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>N</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>K</mi></mrow></msup>\u0000<mo>&lt;</mo>\u0000<mi>y</mi>\u0000<mo>≤</mo>\u0000<mi>N</mi></math> of the smoothness parameter <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi>\u0000<mo>≥</mo> <mn>2</mn></math> is sufficiently large, and to any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup>\u0000<mo>&lt;</mo><mi> min</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><mo stretchy=\"false\">(</mo><msqrt><mrow><mi>y</mi></mrow></msqrt><mo>,</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>N</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>c</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>. </p><p> As a first application, we e","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"20 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145002872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affine Deligne–Lusztig varieties via the double Bruhat graph, I : Semi-infinite orbits 通过重Bruhat图的仿射delig - lusztig变分,I:半无限轨道
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-09-05 DOI: 10.2140/ant.2025.19.1973
Felix Schremmer
{"title":"Affine Deligne–Lusztig varieties via the double Bruhat graph, I : Semi-infinite orbits","authors":"Felix Schremmer","doi":"10.2140/ant.2025.19.1973","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1973","url":null,"abstract":"<p>We introduce a new language to describe the geometry of affine Deligne–Lusztig varieties in affine flag varieties. This first part of a two-paper series develops the definition and fundamental properties of the double Bruhat graph by studying semi-infinite orbits. This double Bruhat graph was originally introduced by Naito and Watanabe to study periodic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math>-polynomials. We use it to describe the geometry of many affine Deligne–Lusztig varieties, overcoming a previously ubiquitous regularity condition. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145002869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信