Algebra & Number Theory最新文献

筛选
英文 中文
Ideals in enveloping algebras of affine Kac–Moody algebras 仿射Kac-Moody代数包络代数的理想
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-05-14 DOI: 10.2140/ant.2025.19.1199
Rekha Biswal, Susan J. Sierra
{"title":"Ideals in enveloping algebras of affine Kac–Moody algebras","authors":"Rekha Biswal, Susan J. Sierra","doi":"10.2140/ant.2025.19.1199","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1199","url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math> be an affine Kac–Moody algebra, with central element <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>, and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi>\u0000<mo>∈</mo>\u0000<mi>ℂ</mi></math>. We study two-sided ideals in the central quotient <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>U</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo>\u0000<mo>:</mo><mo>=</mo>\u0000<mi>U</mi><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo><mo>∕</mo><mo stretchy=\"false\">(</mo><mi>c</mi>\u0000<mo>−</mo>\u0000<mi>λ</mi><mo stretchy=\"false\">)</mo></math> of the universal enveloping algebra of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math> and prove: </p><ol>\u0000<li>\u0000<p>If <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>≠</mo><mn>0</mn></math> then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>U</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo></math> is simple. </p></li>\u0000<li>\u0000<p>The algebra <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo></math> has <span>just-infinite growth</span>, in the sense that any proper quotient has polynomial growth.</p></li></ol>\u0000<p> As an immediate corollary, we show that the annihilator of any nontrivial integrable highest-weight representation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math> is centrally generated, extending a result of Chari for Verma modules. </p><p> We also show that universal enveloping algebras of loop algebras and current algebras of finite-dimensional simple Lie algebras have just-infinite growth, and prove similar results to the two results above for quotients of symmetric algebras of these Lie algebras by Poisson ideals. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"25 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry-of-numbers methods in the cusp 尖端的数的几何方法
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-05-14 DOI: 10.2140/ant.2025.19.1099
Arul Shankar, Artane Siad, Ashvin A. Swaminathan, Ila Varma
{"title":"Geometry-of-numbers methods in the cusp","authors":"Arul Shankar, Artane Siad, Ashvin A. Swaminathan, Ila Varma","doi":"10.2140/ant.2025.19.1099","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1099","url":null,"abstract":"<p>We develop new methods for counting integral orbits having bounded invariants that lie inside the cusps of fundamental domains for coregular representations. We illustrate these methods for a representation of cardinal interest in number theory, namely that of the split orthogonal group acting on the space of quadratic forms. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"57 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semistable representations as limits of crystalline representations 半稳定表征是晶体表征的极限
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-05-14 DOI: 10.2140/ant.2025.19.1049
Anand Chitrao, Eknath Ghate, Seidai Yasuda
{"title":"Semistable representations as limits of crystalline representations","authors":"Anand Chitrao, Eknath Ghate, Seidai Yasuda","doi":"10.2140/ant.2025.19.1049","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1049","url":null,"abstract":"&lt;p&gt;We construct an explicit sequence &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt; &lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; of crystalline representations of exceptional weights converging to a given irreducible two-dimensional semistable representation &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt; &lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℒ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt; Gal&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover accent=\"false\"&gt;&lt;mrow&gt;&lt;mi&gt;ℚ&lt;/mi&gt; &lt;/mrow&gt;&lt;mo accent=\"true\"&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;/&lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ℚ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;. The convergence takes place in the blow-up space of two-dimensional trianguline representations studied by Colmez and Chenevier. The process of blow-up is described in detail in the rigid-analytic setting and may be of independent interest. Also, we recover a formula of Stevens expressing the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℒ&lt;/mi&gt;&lt;/math&gt;-invariant as a logarithmic derivative. &lt;/p&gt;&lt;p&gt; Our result can be used to compute the reduction of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt; &lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℒ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; in terms of the reductions of the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt; &lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;. For instance, using the zig-zag conjecture we recover (resp. extend) the work of Breuil and Mézard and Guerberoff and Park computing the reductions of the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt; &lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi mathvariant=\"bold-script\"&gt;ℒ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; for weights &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt; at most &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;\u0000&lt;mo&gt;−&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt; (resp. &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;p&lt;/mi&gt;\u0000&lt;mo&gt;+&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt; at least on the inertia subgroup. In the cases where zig-zag is known, we are further able to obtain some new information about the reductions for small odd weights. &lt;/p&gt;&lt;p&gt; In the cases where zig-zag is known, we are further able to obtain some new information about the reduct","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The integral Chow ring of weighted blow-ups 加权爆炸的积分周氏环
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-05-14 DOI: 10.2140/ant.2025.19.1231
Veronica Arena, Stephen Obinna
{"title":"The integral Chow ring of weighted blow-ups","authors":"Veronica Arena, Stephen Obinna","doi":"10.2140/ant.2025.19.1231","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1231","url":null,"abstract":"<p>We give a formula for the Chow rings of weighted blow-ups. Along the way, we also compute the Chow rings of weighted projective stack bundles, a formula for the Gysin homomorphism of a weighted blow-up, and a generalization of the splitting principle. In addition, in the Appendix we compute the Chern class of a weighted blow-up. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"29 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit isogenies of prime degree over number fields 数域上素数次的显式同基因
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-05-14 DOI: 10.2140/ant.2025.19.1147
Barinder S. Banwait, Maarten Derickx
{"title":"Explicit isogenies of prime degree over number fields","authors":"Barinder S. Banwait, Maarten Derickx","doi":"10.2140/ant.2025.19.1147","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1147","url":null,"abstract":"<p>We provide an explicit and algorithmic version of a theorem of Momose classifying isogenies of prime degree of elliptic curves over number fields, which we implement in Sage and PARI/GP. Combining this algorithm with recent work of Box, Gajović and Goodman we obtain the first classifications of the possible prime degree isogenies of elliptic curves over cubic number fields, as well as for several quadratic fields not previously known. While the correctness of the general algorithm relies on the generalised Riemann hypothesis, the algorithm is unconditional for the restricted class of semistable elliptic curves. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"33 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presentations of Galois groups of maximal extensions with restricted ramification 具有受限分支的极大扩展伽罗瓦群的表示
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-04-22 DOI: 10.2140/ant.2025.19.835
Yuan Liu
{"title":"Presentations of Galois groups of maximal extensions with restricted ramification","authors":"Yuan Liu","doi":"10.2140/ant.2025.19.835","DOIUrl":"https://doi.org/10.2140/ant.2025.19.835","url":null,"abstract":"<p>Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>, the Galois group of the maximal extension of a global field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> that is unramified outside a finite set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math> of places, as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> varies among a certain family of extensions of a fixed global field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math>. We define a group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>B</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math>, for each finite simple <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>-module <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>, to generalize the work of Koch and Shafarevich on the pro-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math> completion of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>. We prove that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math> always admits a balanced presentation when it is finitely generated. In the setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the random group in the conjecture. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"8 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motivic distribution of rational curves and twisted products of toric varieties 环缘品种有理曲线和扭积的动力分布
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-04-22 DOI: 10.2140/ant.2025.19.883
Loïs Faisant
{"title":"Motivic distribution of rational curves and twisted products of toric varieties","authors":"Loïs Faisant","doi":"10.2140/ant.2025.19.883","DOIUrl":"https://doi.org/10.2140/ant.2025.19.883","url":null,"abstract":"<p>This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a smooth projective Fano variety, or not far from being Fano. </p><p> We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves of the Batyrev–Manin–Peyre principle for rational points. </p><p> The central tool of this article is the property of equidistribution of curves. We show that this notion does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for curves on a certain kind of twisted products.</p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"33 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malle’s conjecture for fair counting functions 公平计数函数的Malle猜想
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-04-22 DOI: 10.2140/ant.2025.19.1007
Peter Koymans, Carlo Pagano
{"title":"Malle’s conjecture for fair counting functions","authors":"Peter Koymans, Carlo Pagano","doi":"10.2140/ant.2025.19.1007","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1007","url":null,"abstract":"<p>We show that the naive adaptation of Malle’s conjecture to fair counting functions is not true in general. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"97 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth cuboids in group theory 群论中的光滑长方体
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-04-22 DOI: 10.2140/ant.2025.19.967
Joshua Maglione, Mima Stanojkovski
{"title":"Smooth cuboids in group theory","authors":"Joshua Maglione, Mima Stanojkovski","doi":"10.2140/ant.2025.19.967","DOIUrl":"https://doi.org/10.2140/ant.2025.19.967","url":null,"abstract":"<p>A smooth cuboid can be identified with a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn><mo>×</mo><mn>3</mn></math> matrix of linear forms in three variables, with coefficients in a field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>, whose determinant describes a smooth cubic in the projective plane. To each such matrix one can associate a group scheme over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>. We produce isomorphism invariants of these groups in terms of their <span>adjoint algebras</span>, which also give information on the number of their maximal abelian subgroups. Moreover, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> is finite, we give a characterization of the isomorphism types of the groups in terms of isomorphisms of elliptic curves and also describe their automorphism groups. We conclude by applying our results to the determination of the automorphism groups and isomorphism testing of finite <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-groups of class <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math> and exponent <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> arising in this way. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"71 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Syzygies of tangent-developable surfaces and K3 carpets via secant varieties 切线可展面与K3地毯的切线可展面协同作用
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2025-04-22 DOI: 10.2140/ant.2025.19.1029
Jinhyung Park
{"title":"Syzygies of tangent-developable surfaces and K3 carpets via secant varieties","authors":"Jinhyung Park","doi":"10.2140/ant.2025.19.1029","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1029","url":null,"abstract":"<p>We give simple geometric proofs of Aprodu, Farkas, Papadima, Raicu and Weyman’s theorem on syzygies of tangent-developable surfaces of rational normal curves and Raicu and Sam’s result on syzygies of K3 carpets. As a consequence, we obtain a quick proof of Green’s conjecture for general curves of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math> over an algebraically closed field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> char</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">)</mo>\u0000<mo>=</mo> <mn>0</mn></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> char</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">)</mo>\u0000<mo>≥</mo><mo stretchy=\"false\">⌊</mo><mo stretchy=\"false\">(</mo><mi>g</mi>\u0000<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mn>2</mn><mo stretchy=\"false\">⌋</mo></math>. Our approach provides a new way to study tangent-developable surfaces in general. Along the way, we show the arithmetic normality of tangent-developable surfaces of arbitrary smooth projective curves of large degree. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"219 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信