{"title":"Smooth numbers are orthogonal to nilsequences","authors":"Lilian Matthiesen, Mengdi Wang","doi":"10.2140/ant.2025.19.1881","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to study distributional properties of integers without large or small prime factors. Define an integer to be <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth if all of its prime factors belong to the interval <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>. We identify suitable weights <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math> for the characteristic function of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth numbers that allow us to establish strong asymptotic results on their distribution in short arithmetic progressions. Building on these equidistribution properties, we show that (a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>-tricked version of) the function <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo> <mn>1</mn></math> is orthogonal to nilsequences. Our results apply in the almost optimal range <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>N</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>K</mi></mrow></msup>\n<mo><</mo>\n<mi>y</mi>\n<mo>≤</mo>\n<mi>N</mi></math> of the smoothness parameter <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi>\n<mo>≥</mo> <mn>2</mn></math> is sufficiently large, and to any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup>\n<mo><</mo><mi> min</mi><mo> <!--FUNCTION APPLICATION--> </mo><mo stretchy=\"false\">(</mo><msqrt><mrow><mi>y</mi></mrow></msqrt><mo>,</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>N</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>c</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>. </p><p> As a first application, we establish for any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi>\n<mo>></mo> <msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>∕</mo><msqrt><mrow><msub><mrow><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo> <!--nolimits--> </mrow><mrow><mn>9</mn> </mrow>\n</msub>\n<mi>N</mi></mrow></msqrt></mrow></msup></math> asymptotic results on the frequency with which an arbitrary finite complexity system of shifted linear forms <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>n</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>+</mo> <msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub>\n<mo>∈</mo>\n<mi>ℤ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\"false\">]</mo></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn>\n<mo>≤</mo>\n<mi>j</mi>\n<mo>≤</mo>\n<mi>r</mi></math>, simultaneously takes <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth values as the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></math> vary over integers below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1881","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to study distributional properties of integers without large or small prime factors. Define an integer to be -smooth if all of its prime factors belong to the interval . We identify suitable weights for the characteristic function of -smooth numbers that allow us to establish strong asymptotic results on their distribution in short arithmetic progressions. Building on these equidistribution properties, we show that (a -tricked version of) the function is orthogonal to nilsequences. Our results apply in the almost optimal range of the smoothness parameter , where is sufficiently large, and to any .
As a first application, we establish for any asymptotic results on the frequency with which an arbitrary finite complexity system of shifted linear forms , , simultaneously takes -smooth values as the vary over integers below .
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.