Smooth numbers are orthogonal to nilsequences

IF 1 1区 数学 Q2 MATHEMATICS
Lilian Matthiesen, Mengdi Wang
{"title":"Smooth numbers are orthogonal to nilsequences","authors":"Lilian Matthiesen, Mengdi Wang","doi":"10.2140/ant.2025.19.1881","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to study distributional properties of integers without large or small prime factors. Define an integer to be <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth if all of its prime factors belong to the interval <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>. We identify suitable weights <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math> for the characteristic function of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth numbers that allow us to establish strong asymptotic results on their distribution in short arithmetic progressions. Building on these equidistribution properties, we show that (a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>-tricked version of) the function <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo> <mn>1</mn></math> is orthogonal to nilsequences. Our results apply in the almost optimal range <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>N</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>K</mi></mrow></msup>\n<mo>&lt;</mo>\n<mi>y</mi>\n<mo>≤</mo>\n<mi>N</mi></math> of the smoothness parameter <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi>\n<mo>≥</mo> <mn>2</mn></math> is sufficiently large, and to any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup>\n<mo>&lt;</mo><mi> min</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><mo stretchy=\"false\">(</mo><msqrt><mrow><mi>y</mi></mrow></msqrt><mo>,</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>N</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>c</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>. </p><p> As a first application, we establish for any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi>\n<mo>&gt;</mo> <msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>∕</mo><msqrt><mrow><msub><mrow><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo> <!--nolimits--> </mrow><mrow><mn>9</mn> </mrow>\n</msub>\n<mi>N</mi></mrow></msqrt></mrow></msup></math> asymptotic results on the frequency with which an arbitrary finite complexity system of shifted linear forms <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>n</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>+</mo> <msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub>\n<mo>∈</mo>\n<mi>ℤ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\"false\">]</mo></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn>\n<mo>≤</mo>\n<mi>j</mi>\n<mo>≤</mo>\n<mi>r</mi></math>, simultaneously takes <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><mi>y</mi><mo stretchy=\"false\">]</mo></math>-smooth values as the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></math> vary over integers below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1881","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to study distributional properties of integers without large or small prime factors. Define an integer to be [y,y]-smooth if all of its prime factors belong to the interval [y,y]. We identify suitable weights g[y,y](n) for the characteristic function of [y,y]-smooth numbers that allow us to establish strong asymptotic results on their distribution in short arithmetic progressions. Building on these equidistribution properties, we show that (a W-tricked version of) the function g[y,y](n) 1 is orthogonal to nilsequences. Our results apply in the almost optimal range (log N)K < y N of the smoothness parameter y, where K 2 is sufficiently large, and to any y < min (y,(log N)c).

As a first application, we establish for any y > N1log 9 N asymptotic results on the frequency with which an arbitrary finite complexity system of shifted linear forms ψj(n) + aj [n1,,ns], 1 j r, simultaneously takes [y,y]-smooth values as the ni vary over integers below N.

光滑数与零序列正交
本文的目的是研究无大小素数因子的整数的分布性质。定义一个整数为[y ‘,y]-光滑,如果它的所有素数因子都属于区间[y ’,y]。我们为[y ‘,y]-光滑数的特征函数确定了合适的权值g[y ’,y](n),使我们能够建立它们在短等差数列中的分布的强渐近结果。在这些等分布性质的基础上,我们证明了函数g[y ',y](n)−1是正交于零序列的。我们的结果适用于光滑参数y的几乎最优范围(log ln N)K<y≤N,其中K≥2足够大,以及任何y ' < min (y,(log ln N)c)。作为第一个应用,我们建立了任意y>; N1∕log (9n)的渐近结果,证明了任意平移线性形式的有限复杂度系统(ψj(N)+ aj∈N [N1,…,N, N], 1≤j≤r,当ni在小于N的整数上变化时同时取[y ',y]-光滑值的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信