An asymptotic orthogonality relation for GL(n, ℝ)

IF 1 1区 数学 Q2 MATHEMATICS
Dorian Goldfeld, Eric Stade, Michael Woodbury
{"title":"An asymptotic orthogonality relation for GL(n, ℝ)","authors":"Dorian Goldfeld, Eric Stade, Michael Woodbury","doi":"10.2140/ant.2025.19.2185","DOIUrl":null,"url":null,"abstract":"<p>Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Asymptotic orthogonality relations for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math>, with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>≤</mo> <mn>3</mn></math>, and applications to number theory, have been considered by various researchers over the last 45 years. Recently, the authors of the present work have derived an explicit asymptotic orthogonality relation, with a power savings error term, for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>4</mn><mo>,</mo>\n<mi>ℝ</mi><mo stretchy=\"false\">)</mo></math>. Here we extend those results to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo>\n<mi>ℝ</mi><mo stretchy=\"false\">)</mo></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>≥</mo> <mn>2</mn></math>. </p><p> For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>≤</mo> <mn>5</mn></math>, our results are contingent on the Ramanujan conjecture at the infinite place, but otherwise are unconditional. In particular, the case <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>=</mo> <mn>5</mn></math> represents a new result. The key new ingredient for the proof of the case <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>=</mo> <mn>5</mn></math> is the theorem of Kim and Shahidi that functorial products of cusp forms on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo>\n<mo>×</mo><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math> are automorphic on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>6</mn><mo stretchy=\"false\">)</mo></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>&gt;</mo> <mn>5</mn></math> (assuming again the Ramanujan conjecture holds at the infinite place), our results are conditional on two conjectures, both of which have been verified in various special cases. The first of these conjectures regards lower bounds for Rankin–Selberg L-functions, and the second concerns recurrence relations for Mellin transforms of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo>\n<mi>ℝ</mi><mo stretchy=\"false\">)</mo></math> Whittaker functions. </p><p> Central to our proof is an application of the Kuznetsov trace formula, and a detailed analysis, utilizing a number of novel techniques, of the various entities — Hecke–Maass cusp forms, Langlands Eisenstein series, spherical principal series Whittaker functions and their Mellin transforms, and so on — that arise in this application. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.2185","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on GL (1)) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Asymptotic orthogonality relations for GL (n), with n 3, and applications to number theory, have been considered by various researchers over the last 45 years. Recently, the authors of the present work have derived an explicit asymptotic orthogonality relation, with a power savings error term, for GL (4, ). Here we extend those results to GL (n, ), n 2.

For n 5, our results are contingent on the Ramanujan conjecture at the infinite place, but otherwise are unconditional. In particular, the case n = 5 represents a new result. The key new ingredient for the proof of the case n = 5 is the theorem of Kim and Shahidi that functorial products of cusp forms on GL (2) × GL (3) are automorphic on GL (6). For n > 5 (assuming again the Ramanujan conjecture holds at the infinite place), our results are conditional on two conjectures, both of which have been verified in various special cases. The first of these conjectures regards lower bounds for Rankin–Selberg L-functions, and the second concerns recurrence relations for Mellin transforms of GL (n, ) Whittaker functions.

Central to our proof is an application of the Kuznetsov trace formula, and a detailed analysis, utilizing a number of novel techniques, of the various entities — Hecke–Maass cusp forms, Langlands Eisenstein series, spherical principal series Whittaker functions and their Mellin transforms, and so on — that arise in this application.

GL(n, l)的渐近正交关系
正交性是表示理论和傅立叶分析中的一个基本主题。Dirichlet利用有限阿贝尔群特征的正交关系(现称为GL(1)上的正交关系)证明了等差数列中的无穷素数。在过去的45年里,许多研究者已经研究了n≤3时GL (n)的渐近正交关系及其在数论中的应用。最近,本工作的作者导出了一个带有省电误差项的GL (4, l)的显式渐近正交关系。这里我们将这些结果推广到GL (n,∈),n≥2。对于n≤5,我们的结果在无限处取决于拉马努金猜想,而在其他地方则是无条件的。特别是,当n= 5时,表示一个新的结果。证明n= 5的关键新成分是Kim和Shahidi的定理,即在GL (2)× GL(3)上的尖形函数积在GL(6)上是自同构的。对于n>; 5(再次假设拉马努金猜想在无限处成立),我们的结果以两个猜想为条件,这两个猜想都在各种特殊情况下得到了验证。第一个猜想是关于Rankin-Selberg l函数的下界,第二个猜想是关于GL (n, l) Whittaker函数的Mellin变换的递归关系。我们证明的核心是库兹涅佐夫迹公式的应用,以及对各种实体的详细分析,利用许多新技术,这些实体- Hecke-Maass尖头形式,Langlands Eisenstein级数,球面主级数Whittaker函数及其Mellin变换,等等-在这种应用中出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信