{"title":"Affine Deligne–Lusztig varieties via the double Bruhat graph, II : Iwahori–Hecke algebra","authors":"Felix Schremmer","doi":"10.2140/ant.2025.19.2015","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new language to describe the geometry of affine Deligne–Lusztig varieties in affine flag varieties. This second part of a two-paper series uses this new language, i.e., the double Bruhat graph, to describe certain structure constants of the Iwahori–Hecke algebra. As an application, we describe nonemptiness and dimension of affine Deligne–Lusztig varieties for most elements of the affine Weyl group and arbitrary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>σ</mi></math>-conjugacy classes. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.2015","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new language to describe the geometry of affine Deligne–Lusztig varieties in affine flag varieties. This second part of a two-paper series uses this new language, i.e., the double Bruhat graph, to describe certain structure constants of the Iwahori–Hecke algebra. As an application, we describe nonemptiness and dimension of affine Deligne–Lusztig varieties for most elements of the affine Weyl group and arbitrary -conjugacy classes.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.