The wavefront sets of unipotent supercuspidal representations

IF 0.9 1区 数学 Q2 MATHEMATICS
Dan Ciubotaru, Lucas Mason-Brown, Emile Okada
{"title":"The wavefront sets of unipotent supercuspidal representations","authors":"Dan Ciubotaru, Lucas Mason-Brown, Emile Okada","doi":"10.2140/ant.2024.18.1863","DOIUrl":null,"url":null,"abstract":"<p>We prove that the double (or canonical unramified) wavefront set of an irreducible depth-0 supercuspidal representation of a reductive <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic group is a singleton provided <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>&gt;</mo> <mn>3</mn><mo stretchy=\"false\">(</mo><mi>h</mi>\n<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>h</mi></math> is the Coxeter number. We deduce that the geometric wavefront set is also a singleton in this case, proving a conjecture of Mœglin and Waldspurger. When the group is inner to split and the representation belongs to Lusztig’s category of unipotent representations, we give an explicit formula for the double and geometric wavefront sets. As a consequence, we show that the nilpotent part of the Deligne–Langlands–Lusztig parameter of a unipotent supercuspidal representation is precisely the image of its geometric wavefront set under Spaltenstein’s duality map. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"29 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1863","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the double (or canonical unramified) wavefront set of an irreducible depth-0 supercuspidal representation of a reductive p-adic group is a singleton provided p > 3(h 1), where h is the Coxeter number. We deduce that the geometric wavefront set is also a singleton in this case, proving a conjecture of Mœglin and Waldspurger. When the group is inner to split and the representation belongs to Lusztig’s category of unipotent representations, we give an explicit formula for the double and geometric wavefront sets. As a consequence, we show that the nilpotent part of the Deligne–Langlands–Lusztig parameter of a unipotent supercuspidal representation is precisely the image of its geometric wavefront set under Spaltenstein’s duality map.

单能超pidal 表示的波前集
我们证明,只要 p> 3(h-1),其中 h 是 Coxeter 数,还原 p-adic 群的不可还原深度-0 超括弧表示的双重(或规范非ramified)波前集就是单子。我们推导出几何波前集在这种情况下也是单子,证明了米格林和瓦尔斯伯格的猜想。当群是内分裂的,且表示属于 Lusztig 的单能表示范畴时,我们给出了双波面集和几何波面集的明确公式。因此,我们证明了单能超pidal 表示的 Deligne-Langlands-Lusztig 参数的零能部分正是其几何波前集在 Spaltenstein 对偶映射下的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信