{"title":"权重 1 希尔伯特赫克代数的非ramifiedness","authors":"Shaunak V. Deo, Mladen Dimitrov, Gabor Wiese","doi":"10.2140/ant.2024.18.1465","DOIUrl":null,"url":null,"abstract":"<p>We prove that the Galois pseudorepresentation valued in the mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math> cuspidal Hecke algebra for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> over a totally real number field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>, of parallel weight <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math> and level prime to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>, is unramified at any place above <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. The same is true for the noncuspidal Hecke algebra at places above <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> whose ramification index is not divisible by <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mo>−</mo><mn>1</mn></math>. A novel geometric ingredient, which is also of independent interest, is the construction and study, in the case when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> ramifies in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>, of generalised <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Θ</mi></math>-operators using Reduzzi and Xiao’s generalised Hasse invariants, including especially an injectivity criterion in terms of minimal weights. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"29 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unramifiedness of weight 1 Hilbert Hecke algebras\",\"authors\":\"Shaunak V. Deo, Mladen Dimitrov, Gabor Wiese\",\"doi\":\"10.2140/ant.2024.18.1465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the Galois pseudorepresentation valued in the mod <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math> cuspidal Hecke algebra for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math> over a totally real number field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math>, of parallel weight <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math> and level prime to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>, is unramified at any place above <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>. The same is true for the noncuspidal Hecke algebra at places above <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> whose ramification index is not divisible by <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi><mo>−</mo><mn>1</mn></math>. A novel geometric ingredient, which is also of independent interest, is the construction and study, in the case when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> ramifies in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math>, of generalised <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Θ</mi></math>-operators using Reduzzi and Xiao’s generalised Hasse invariants, including especially an injectivity criterion in terms of minimal weights. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1465\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1465","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,在完全实数域 F 上的 GL (2) 的 mod pn cuspidal Hecke 代数中,平行权重为 1 且级数为 p 的素数的伽罗瓦假呈现在 p 以上的任何位置都是无ramified 的。一个新颖的几何成分,也是一个独立的兴趣点,是在 p 在 F 中斜线化的情况下,利用 Reduzzi 和 Xiao 的广义哈塞不变式,特别是包括最小权重的注入性准则,构造和研究广义 Θ 运算符。
We prove that the Galois pseudorepresentation valued in the mod cuspidal Hecke algebra for over a totally real number field , of parallel weight and level prime to , is unramified at any place above . The same is true for the noncuspidal Hecke algebra at places above whose ramification index is not divisible by . A novel geometric ingredient, which is also of independent interest, is the construction and study, in the case when ramifies in , of generalised -operators using Reduzzi and Xiao’s generalised Hasse invariants, including especially an injectivity criterion in terms of minimal weights.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.