{"title":"f(a,b2) 和 f(a,p2) 的质值,f 二次方","authors":"Stanley Yao Xiao","doi":"10.2140/ant.2024.18.1619","DOIUrl":null,"url":null,"abstract":"<p>We prove an asymptotic formula for primes of the shape <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> integers and of the shape <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> prime. Here <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> is a binary quadratic form with integer coefficients, irreducible over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi></math> and has no local obstructions. This refines the seminal work of Friedlander and Iwaniec on primes of the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>+</mo> <msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup></math> and of Heath-Brown and Li on primes of the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>+</mo> <msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math>, as well as earlier work of the author with Lam and Schindler on primes of the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> a positive definite form. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prime values of f(a,b2) and f(a,p2), f quadratic\",\"authors\":\"Stanley Yao Xiao\",\"doi\":\"10.2140/ant.2024.18.1619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an asymptotic formula for primes of the shape <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>b</mi></math> integers and of the shape <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> prime. Here <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi></math> is a binary quadratic form with integer coefficients, irreducible over <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℚ</mi></math> and has no local obstructions. This refines the seminal work of Friedlander and Iwaniec on primes of the form <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>+</mo> <msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup></math> and of Heath-Brown and Li on primes of the form <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>+</mo> <msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math>, as well as earlier work of the author with Lam and Schindler on primes of the form <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi></math> a positive definite form. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1619\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1619","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了 a、b 为整数的 f(a,b2)和 p 为质数的 f(a,p2) 的渐近公式。在这里,f 是具有整数系数的二元二次型,在ℚ 上不可还原,并且没有局部障碍。这完善了弗里德兰德和伊瓦尼茨关于形式为 x2+ y4 的素数的开创性工作,希斯-布朗和李关于形式为 a2+ p4 的素数的开创性工作,以及作者与林和辛德勒关于形式为 f(a,p)且 f 为正定形式的素数的早期工作。
We prove an asymptotic formula for primes of the shape with , integers and of the shape with prime. Here is a binary quadratic form with integer coefficients, irreducible over and has no local obstructions. This refines the seminal work of Friedlander and Iwaniec on primes of the form and of Heath-Brown and Li on primes of the form , as well as earlier work of the author with Lam and Schindler on primes of the form with a positive definite form.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.