f(a,b2) 和 f(a,p2) 的质值,f 二次方

IF 0.9 1区 数学 Q2 MATHEMATICS
Stanley Yao Xiao
{"title":"f(a,b2) 和 f(a,p2) 的质值,f 二次方","authors":"Stanley Yao Xiao","doi":"10.2140/ant.2024.18.1619","DOIUrl":null,"url":null,"abstract":"<p>We prove an asymptotic formula for primes of the shape <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> integers and of the shape <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> prime. Here <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> is a binary quadratic form with integer coefficients, irreducible over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi></math> and has no local obstructions. This refines the seminal work of Friedlander and Iwaniec on primes of the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>+</mo> <msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup></math> and of Heath-Brown and Li on primes of the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>+</mo> <msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math>, as well as earlier work of the author with Lam and Schindler on primes of the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> a positive definite form. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prime values of f(a,b2) and f(a,p2), f quadratic\",\"authors\":\"Stanley Yao Xiao\",\"doi\":\"10.2140/ant.2024.18.1619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an asymptotic formula for primes of the shape <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>b</mi></math> integers and of the shape <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> prime. Here <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi></math> is a binary quadratic form with integer coefficients, irreducible over <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℚ</mi></math> and has no local obstructions. This refines the seminal work of Friedlander and Iwaniec on primes of the form <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>+</mo> <msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup></math> and of Heath-Brown and Li on primes of the form <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>+</mo> <msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math>, as well as earlier work of the author with Lam and Schindler on primes of the form <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi></math> a positive definite form. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1619\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1619","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了 a、b 为整数的 f(a,b2)和 p 为质数的 f(a,p2) 的渐近公式。在这里,f 是具有整数系数的二元二次型,在ℚ 上不可还原,并且没有局部障碍。这完善了弗里德兰德和伊瓦尼茨关于形式为 x2+ y4 的素数的开创性工作,希斯-布朗和李关于形式为 a2+ p4 的素数的开创性工作,以及作者与林和辛德勒关于形式为 f(a,p)且 f 为正定形式的素数的早期工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prime values of f(a,b2) and f(a,p2), f quadratic

We prove an asymptotic formula for primes of the shape f(a,b2) with a, b integers and of the shape f(a,p2) with p prime. Here f is a binary quadratic form with integer coefficients, irreducible over and has no local obstructions. This refines the seminal work of Friedlander and Iwaniec on primes of the form x2 + y4 and of Heath-Brown and Li on primes of the form a2 + p4, as well as earlier work of the author with Lam and Schindler on primes of the form f(a,p) with f a positive definite form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信