Application of a polynomial sieve: beyond separation of variables

IF 0.9 1区 数学 Q2 MATHEMATICS
Dante Bonolis, Lillian B. Pierce
{"title":"Application of a polynomial sieve: beyond separation of variables","authors":"Dante Bonolis, Lillian B. Pierce","doi":"10.2140/ant.2024.18.1515","DOIUrl":null,"url":null,"abstract":"<p>Let a polynomial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi>\n<mo>∈</mo>\n<mi>ℤ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> be given. The square sieve can provide an upper bound for the number of integral <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo></math> is a perfect square. Recently this has been generalized substantially: first to a power sieve, counting <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>r</mi></mrow></msup></math> is solvable for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi>\n<mo>∈</mo>\n<mi>ℤ</mi></math>; then to a polynomial sieve, counting <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>g</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo></math> is solvable, for a given polynomial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>. Formally, a polynomial sieve lemma can encompass the more general problem of counting <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math> is solvable, for a given polynomial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>. Previous applications, however, have only succeeded in the case that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo></math> exhibits separation of variables, that is, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo></math> takes the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>g</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo></math>. In the present work, we present the first application of a polynomial sieve to count <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math> is solvable, in a case for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> does not exhibit separation of variables. Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1515","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let a polynomial f [X1,,Xn] be given. The square sieve can provide an upper bound for the number of integral x [B,B]n such that f(x) is a perfect square. Recently this has been generalized substantially: first to a power sieve, counting x [B,B]n for which f(x) = yr is solvable for y ; then to a polynomial sieve, counting x [B,B]n for which f(x) = g(y) is solvable, for a given polynomial g. Formally, a polynomial sieve lemma can encompass the more general problem of counting x [B,B]n for which F(y,x) = 0 is solvable, for a given polynomial F. Previous applications, however, have only succeeded in the case that F(y,x) exhibits separation of variables, that is, F(y,x) takes the form f(x) g(y). In the present work, we present the first application of a polynomial sieve to count x [B,B]n such that F(y,x) = 0 is solvable, in a case for which F does not exhibit separation of variables. Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets.

多项式筛的应用:超越变量分离
给定一个多项式 f∈ℤ[X1,... ,Xn] 。方筛可以为 f(x) 是完全平方的积分 x∈[-B,B]n 的个数提供一个上限。最近,这一方法得到了实质性的推广:首先是幂级数筛法,计算对于 y∈ℤ f(x)= yr 可解的 x∈ [-B,B]n 的个数;然后是多项式筛法,计算对于给定的多项式 g,f(x)=g(y) 可解的 x∈ [-B,B]n 的个数。从形式上讲,多项式筛法 Lemma 可以包含一个更普遍的问题,即对于给定的多项式 F,计算 F(y,x)= 0 可解的 x∈ [-B,B]n。然而,以往的应用只在 F(y,x) 显示变量分离的情况下取得成功,即 F(y,x) 的形式为 f(x)-g(y)。在本研究中,我们首次应用多项式筛法,在 F 不显示变量分离的情况下,计算 x∈ [-B,B]n 中 F(y,x)= 0 的可解性。因此,我们获得了塞雷问题的一个新结果,涉及薄集中点的计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信