具有有限 Coxeter 部分的亲和 Deligne-Lusztig 变体

IF 0.9 1区 数学 Q2 MATHEMATICS
Xuhua He, Sian Nie, Qingchao Yu
{"title":"具有有限 Coxeter 部分的亲和 Deligne-Lusztig 变体","authors":"Xuhua He, Sian Nie, Qingchao Yu","doi":"10.2140/ant.2024.18.1681","DOIUrl":null,"url":null,"abstract":"<p>We study affine Deligne–Lusztig varieties <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub></math> when the finite part of the element <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> in the Iwahori–Weyl group is a partial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>σ</mi></math>-Coxeter element. We show that such <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> is a cordial element and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo>≠</mo><mi>∅</mi></math> if and only if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub></math> has a simple geometric structure: the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>σ</mi></math>-centralizer of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> acts transitively on the set of irreducible components of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub></math>; and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"double-struck\">𝔸</mi></mrow><mrow><mn>1</mn></mrow></msup></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔾</mi></mrow><mrow><mi>m</mi></mrow></msub></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine Deligne–Lusztig varieties with finite Coxeter parts\",\"authors\":\"Xuhua He, Sian Nie, Qingchao Yu\",\"doi\":\"10.2140/ant.2024.18.1681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study affine Deligne–Lusztig varieties <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\\\"false\\\">(</mo><mi>b</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub></math> when the finite part of the element <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math> in the Iwahori–Weyl group is a partial <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>σ</mi></math>-Coxeter element. We show that such <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math> is a cordial element and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\\\"false\\\">(</mo><mi>b</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub><mo>≠</mo><mi>∅</mi></math> if and only if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>b</mi></math> satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>b</mi></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\\\"false\\\">(</mo><mi>b</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub></math> has a simple geometric structure: the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>σ</mi></math>-centralizer of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>b</mi></math> acts transitively on the set of irreducible components of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\\\"false\\\">(</mo><mi>b</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub></math>; and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"double-struck\\\">𝔸</mi></mrow><mrow><mn>1</mn></mrow></msup></math> or <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔾</mi></mrow><mrow><mi>m</mi></mrow></msub></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1681\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1681","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了当岩崛韦尔群中元素 w 的有限部分是部分 σ-Coxeter 元素时的仿射 Deligne-Lusztig varieties Xw(b)。我们证明,当且仅当 b 满足某个霍奇-牛顿不可分性条件时,这样的 w 是一个心元,且 Xw(b)≠∅ 。我们的主要结果是,对于这样的 w 和 b,Xw(b) 有一个简单的几何结构:b 的 σ-中心化作用于 Xw(b) 的不可还原成分集;每个不可还原成分都是一个迭代纤度,迭代纤度越过 Coxeter 类型的经典 Deligne-Lusztig 变化,迭代纤度要么是 𝔸1 要么是 𝔾m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine Deligne–Lusztig varieties with finite Coxeter parts

We study affine Deligne–Lusztig varieties Xw(b) when the finite part of the element w in the Iwahori–Weyl group is a partial σ-Coxeter element. We show that such w is a cordial element and Xw(b) if and only if b satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such w and b, Xw(b) has a simple geometric structure: the σ-centralizer of b acts transitively on the set of irreducible components of Xw(b); and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either 𝔸1 or 𝔾m.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信