{"title":"Affine Deligne–Lusztig varieties with finite Coxeter parts","authors":"Xuhua He, Sian Nie, Qingchao Yu","doi":"10.2140/ant.2024.18.1681","DOIUrl":null,"url":null,"abstract":"<p>We study affine Deligne–Lusztig varieties <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub></math> when the finite part of the element <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> in the Iwahori–Weyl group is a partial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>σ</mi></math>-Coxeter element. We show that such <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> is a cordial element and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo>≠</mo><mi>∅</mi></math> if and only if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub></math> has a simple geometric structure: the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>σ</mi></math>-centralizer of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> acts transitively on the set of irreducible components of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><mi>w</mi><mo stretchy=\"false\">(</mo><mi>b</mi><mo stretchy=\"false\">)</mo></mrow></msub></math>; and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"double-struck\">𝔸</mi></mrow><mrow><mn>1</mn></mrow></msup></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔾</mi></mrow><mrow><mi>m</mi></mrow></msub></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1681","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study affine Deligne–Lusztig varieties when the finite part of the element in the Iwahori–Weyl group is a partial -Coxeter element. We show that such is a cordial element and if and only if satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such and , has a simple geometric structure: the -centralizer of acts transitively on the set of irreducible components of ; and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either or .
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.