GL(3) × GL(2) L 函数的谱矩公式 I : 偶态情况

IF 0.9 1区 数学 Q2 MATHEMATICS
Chung-Hang Kwan
{"title":"GL(3) × GL(2) L 函数的谱矩公式 I : 偶态情况","authors":"Chung-Hang Kwan","doi":"10.2140/ant.2024.18.1817","DOIUrl":null,"url":null,"abstract":"<p>Spectral moment formulae of various shapes have proven very successful in studying the statistics of central <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-values. We establish, in a completely explicit fashion, such formulae for the family of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo>\n<mo>×</mo><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> Rankin–Selberg <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions using the period integral method. Our argument does not rely on either the Kuznetsov or Voronoi formulae. We also prove the essential analytic properties and derive explicit formulae for the integral transform of our moment formulae. We hope that our method will provide deeper insights into moments of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions for higher-rank groups. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral moment formulae for GL(3) × GL(2) L-functions I : The cuspidal case\",\"authors\":\"Chung-Hang Kwan\",\"doi\":\"10.2140/ant.2024.18.1817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spectral moment formulae of various shapes have proven very successful in studying the statistics of central <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math>-values. We establish, in a completely explicit fashion, such formulae for the family of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo>\\n<mo>×</mo><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math> Rankin–Selberg <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math>-functions using the period integral method. Our argument does not rely on either the Kuznetsov or Voronoi formulae. We also prove the essential analytic properties and derive explicit formulae for the integral transform of our moment formulae. We hope that our method will provide deeper insights into moments of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math>-functions for higher-rank groups. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1817\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1817","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,各种形状的谱矩公式在研究中心 L 值的统计方面非常成功。我们采用周期积分法,以完全明确的方式为 GL (3)× GL (2) 兰金-塞尔伯格 L 函数族建立了这样的公式。我们的论证既不依赖库兹涅佐夫公式,也不依赖沃罗诺伊公式。我们还证明了基本的解析性质,并推导出矩公式积分变换的明确公式。我们希望我们的方法能为高阶群的 L 函数矩提供更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral moment formulae for GL(3) × GL(2) L-functions I : The cuspidal case

Spectral moment formulae of various shapes have proven very successful in studying the statistics of central L-values. We establish, in a completely explicit fashion, such formulae for the family of GL (3) × GL (2) Rankin–Selberg L-functions using the period integral method. Our argument does not rely on either the Kuznetsov or Voronoi formulae. We also prove the essential analytic properties and derive explicit formulae for the integral transform of our moment formulae. We hope that our method will provide deeper insights into moments of L-functions for higher-rank groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信