Algebra & Number Theory最新文献

筛选
英文 中文
Polyhedral and tropical geometry of flag positroids 旗正多面体的多面体几何和热带几何
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1333
Jonathan Boretsky, Christopher Eur, Lauren Williams
{"title":"Polyhedral and tropical geometry of flag positroids","authors":"Jonathan Boretsky, Christopher Eur, Lauren Williams","doi":"10.2140/ant.2024.18.1333","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1333","url":null,"abstract":"<p>A <span>flag positroid </span>of ranks <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle>\u0000<mo>:</mo><mo>=</mo>\u0000<mo stretchy=\"false\">(</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub>\u0000<mo><</mo>\u0000<mo>⋯</mo>\u0000<mo><</mo> <msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mi>n</mi><mo stretchy=\"false\">]</mo></math> is a flag matroid that can be realized by a real <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub>\u0000<mo>×</mo>\u0000<mi>n</mi></math> matrix <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> such that the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub>\u0000<mo>×</mo> <msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math> minors of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> involving rows <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math> are nonnegative for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn>\u0000<mo>≤</mo>\u0000<mi>i</mi>\u0000<mo>≤</mo>\u0000<mi>k</mi></math>. In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle>\u0000<mo>:</mo><mo>=</mo>\u0000<mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>a</mi>\u0000<mo>+</mo> <mn>1</mn><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math> is a sequence of consecutive numbers. In this case we show that the nonnegative tropical flag variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi> TrFl</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math> equals the nonnegative flag Dressian <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi> FlDr</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math>, and that the points <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi>\u0000<mo>=</mo>\u0000<mo stretchy=\"false\">(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>μ</mi></mrow>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the p-adic interpolation of unitary Friedberg–Jacquet periods 论单位弗里德伯格-雅克特周期的 p-adic 插值法
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1117
Andrew Graham
{"title":"On the p-adic interpolation of unitary Friedberg–Jacquet periods","authors":"Andrew Graham","doi":"10.2140/ant.2024.18.1117","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1117","url":null,"abstract":"<p>We establish functoriality of higher Coleman theory for certain unitary Shimura varieties and use this to construct a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic analytic function interpolating unitary Friedberg–Jacquet periods. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"19 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined height pairing 精致的高度搭配
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1039
Bruno Kahn
{"title":"Refined height pairing","authors":"Bruno Kahn","doi":"10.2140/ant.2024.18.1039","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1039","url":null,"abstract":"&lt;p&gt;For a &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;-dimensional regular proper variety &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt; over the function field of a smooth variety &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt; over a field &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt; and for &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;i&lt;/mi&gt;\u0000&lt;mo&gt;≥&lt;/mo&gt; &lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;, we define a subgroup &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt; of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; and construct a “refined height pairing” &lt;/p&gt;\u0000&lt;div&gt;&lt;math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;\u0000&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;\u0000&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;\u0000&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;\u0000&lt;/math&gt;\u0000&lt;/div&gt;\u0000&lt;p&gt; in the category of abelian groups up to isogeny. For &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;i&lt;/mi&gt;\u0000&lt;mo&gt;=&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;, &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt; CH&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt; is the group of cycles numerically equivalent to &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;. This pairing relates to pairings defined by P. Schneider and A. Beilinson if &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt; is a curve, to a refined height defined by ","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"70 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enumeration of conjugacy classes in affine groups 仿射群中共轭类的枚举
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1189
Jason Fulman, Robert M. Guralnick
{"title":"Enumeration of conjugacy classes in affine groups","authors":"Jason Fulman, Robert M. Guralnick","doi":"10.2140/ant.2024.18.1189","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1189","url":null,"abstract":"<p>We study the conjugacy classes of the classical affine groups. We derive generating functions for the number of classes analogous to formulas of Wall and the authors for the classical groups. We use these to get good upper bounds for the number of classes. These naturally come up as difficult cases in the study of the noncoprime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mi>V</mi>\u0000<mo stretchy=\"false\">)</mo></math> problem of Brauer. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balmer spectra and Drinfeld centers 巴尔默光谱和德林菲尔德中心
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1081
Kent B. Vashaw
{"title":"Balmer spectra and Drinfeld centers","authors":"Kent B. Vashaw","doi":"10.2140/ant.2024.18.1081","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1081","url":null,"abstract":"<p>The Balmer spectrum of a monoidal triangulated category is an important geometric construction which is closely related to the problem of classifying thick tensor ideals. We prove that the forgetful functor from the Drinfeld center of a finite tensor category <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>C</mi></mstyle></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>C</mi></mstyle></math> extends to a monoidal triangulated functor between their corresponding stable categories, and induces a continuous map between their Balmer spectra. We give conditions under which it is injective, surjective, or a homeomorphism. We apply this general theory to prove that Balmer spectra associated to finite-dimensional cosemisimple quasitriangular Hopf algebras (in particular, group algebras in characteristic dividing the order of the group) coincide with the Balmer spectra associated to their Drinfeld doubles, and that the thick ideals of both categories are in bijection. An analogous theorem is proven for certain Benson–Witherspoon smash coproduct Hopf algebras, which are not quasitriangular in general. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"58 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Locally analytic vector bundles on the Fargues–Fontaine curve 法尔古斯-方丹曲线上的局部解析向量束
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.899
Gal Porat
{"title":"Locally analytic vector bundles on the Fargues–Fontaine curve","authors":"Gal Porat","doi":"10.2140/ant.2024.18.899","DOIUrl":"https://doi.org/10.2140/ant.2024.18.899","url":null,"abstract":"<p>We develop a version of Sen theory for equivariant vector bundles on the Fargues–Fontaine curve. We show that every equivariant vector bundle canonically descends to a locally analytic vector bundle. A comparison with the theory of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>φ</mi><mo>,</mo><mi>Γ</mi><mo stretchy=\"false\">)</mo></math>-modules in the cyclotomic case then recovers the Cherbonnier–Colmez decompletion theorem. Next, we focus on the subcategory of de Rham locally analytic vector bundles. Using the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic monodromy theorem, we show that each locally analytic vector bundle <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℰ</mi></math> has a canonical differential equation for which the space of solutions has full rank. As a consequence, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℰ</mi></math> and its sheaf of solutions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Sol</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℰ</mi><mo stretchy=\"false\">)</mo></math> are in a natural correspondence, which gives a geometric interpretation of a result of Berger on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>φ</mi><mo>,</mo><mi>Γ</mi><mo stretchy=\"false\">)</mo></math>-modules. In particular, if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> is a de Rham Galois representation, its associated filtered <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>φ</mi><mo>,</mo><mi>N</mi><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>K</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>-module is realized as the space of global solutions to the differential equation. A key to our approach is a vanishing result for the higher locally analytic vectors of representations satisfying the Tate–Sen formalism, which is also of independent interest. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"48 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theta correspondence and simple factors in global Arthur parameters 全局阿瑟参数中的 Theta 对应和简单因子
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.969
Chenyan Wu
{"title":"Theta correspondence and simple factors in global Arthur parameters","authors":"Chenyan Wu","doi":"10.2140/ant.2024.18.969","DOIUrl":"https://doi.org/10.2140/ant.2024.18.969","url":null,"abstract":"<p>By using results on poles of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions and theta correspondence, we give a bound on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>χ</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math>-factors of the global Arthur parameter of a cuspidal automorphic representation <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> of a classical group or a metaplectic group where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>χ</mi></math> is a conjugate self-dual automorphic character and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> is an integer which is the dimension of an irreducible representation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> SL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math>. We derive a more precise relation when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> lies in a generic global <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>-packet. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"25 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equidistribution theorems for holomorphic Siegel cusp forms of general degree: the level aspect 一般度数的全态西格尔尖顶形式的等分布定理:水平方面
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.993
Henry H. Kim, Satoshi Wakatsuki, Takuya Yamauchi
{"title":"Equidistribution theorems for holomorphic Siegel cusp forms of general degree: the level aspect","authors":"Henry H. Kim, Satoshi Wakatsuki, Takuya Yamauchi","doi":"10.2140/ant.2024.18.993","DOIUrl":"https://doi.org/10.2140/ant.2024.18.993","url":null,"abstract":"<p>This paper is an extension of Kim et al. (2020a), and we prove equidistribution theorems for families of holomorphic Siegel cusp forms of general degree in the level aspect. Our main contribution is to estimate unipotent contributions for general degree in the geometric side of Arthur’s invariant trace formula in terms of Shintani zeta functions in a uniform way. Several applications, including the vertical Sato–Tate theorem and low-lying zeros for standard <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions of holomorphic Siegel cusp forms, are discussed. We also show that the “nongenuine forms”, which come from nontrivial endoscopic contributions by Langlands functoriality classified by Arthur, are negligible. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"25 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity structure of the arc space of a fat point 胖点弧空间的多重性结构
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.947
Rida Ait El Manssour, Gleb Pogudin
{"title":"Multiplicity structure of the arc space of a fat point","authors":"Rida Ait El Manssour, Gleb Pogudin","doi":"10.2140/ant.2024.18.947","DOIUrl":"https://doi.org/10.2140/ant.2024.18.947","url":null,"abstract":"<p>The equation <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup>\u0000<mo>=</mo> <mn>0</mn></math> defines a fat point on a line. The algebra of regular functions on the arc space of this scheme is the quotient of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mo stretchy=\"false\">[</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></mrow></msup><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo stretchy=\"false\">]</mo></math> by all differential consequences of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup>\u0000<mo>=</mo> <mn>0</mn></math>. This infinite-dimensional algebra admits a natural filtration by finite-dimensional algebras corresponding to the truncations of arcs. We show that the generating series for their dimensions equals <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mo>∕</mo><mo stretchy=\"false\">(</mo><mn>1</mn>\u0000<mo>−</mo>\u0000<mi>m</mi><mi>t</mi><mo stretchy=\"false\">)</mo></math>. We also determine the lexicographic initial ideal of the defining ideal of the arc space. These results are motivated by the nonreduced version of the geometric motivic Poincaré series, multiplicities in differential algebra, and connections between arc spaces and the Rogers–Ramanujan identities. We also prove a recent conjecture put forth by Afsharijoo in the latter context. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"24 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the ordinary Hecke orbit conjecture 关于普通赫克轨道猜想
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.847
Pol van Hoften
{"title":"On the ordinary Hecke orbit conjecture","authors":"Pol van Hoften","doi":"10.2140/ant.2024.18.847","DOIUrl":"https://doi.org/10.2140/ant.2024.18.847","url":null,"abstract":"<p>We prove the ordinary Hecke orbit conjecture for Shimura varieties of Hodge type at primes of good reduction. We make use of the global Serre–Tate coordinates of Chai as well as recent results of D’Addezio about the monodromy groups of isocrystals. The new ingredients in this paper are a general monodromy theorem for Hecke-stable subvarieties for Shimura varieties of Hodge type, and a rigidity result for the formal completions of ordinary Hecke orbits. Along the way, we show that classical Serre–Tate coordinates can be described using unipotent formal groups, generalising a result of Howe. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"34 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信