A short resolution of the diagonal for smooth projective toric varieties of Picard rank 2

IF 0.9 1区 数学 Q2 MATHEMATICS
Michael K. Brown, Mahrud Sayrafi
{"title":"A short resolution of the diagonal for smooth projective toric varieties of Picard rank 2","authors":"Michael K. Brown, Mahrud Sayrafi","doi":"10.2140/ant.2024.18.1923","DOIUrl":null,"url":null,"abstract":"<p>Given a smooth projective toric variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> of Picard rank 2, we resolve the diagonal sheaf on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi>\n<mo>×</mo>\n<mi>X</mi></math> by a linear complex of length <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> dim</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>X</mi></math> consisting of finite direct sums of line bundles. As applications, we prove a new case of a conjecture of Berkesch, Ermana and Smith that predicts a version of Hilbert’s syzygy theorem for virtual resolutions, and we obtain a Horrocks-type splitting criterion for vector bundles over smooth projective toric varieties of Picard rank 2, extending a result of Eisenbud, Erman and Schreyer. We also apply our results to give a new proof, in the case of smooth projective toric varieties of Picard rank 2, of a conjecture of Orlov concerning the Rouquier dimension of derived categories. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1923","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a smooth projective toric variety X of Picard rank 2, we resolve the diagonal sheaf on X × X by a linear complex of length dim X consisting of finite direct sums of line bundles. As applications, we prove a new case of a conjecture of Berkesch, Ermana and Smith that predicts a version of Hilbert’s syzygy theorem for virtual resolutions, and we obtain a Horrocks-type splitting criterion for vector bundles over smooth projective toric varieties of Picard rank 2, extending a result of Eisenbud, Erman and Schreyer. We also apply our results to give a new proof, in the case of smooth projective toric varieties of Picard rank 2, of a conjecture of Orlov concerning the Rouquier dimension of derived categories.

皮卡等级 2 的光滑射影环状变种对角线的简短解析
给定皮卡秩为 2 的光滑射影环 variety X,我们用长度为 dim X 的线性复数解析 X×X 上的对角剪,该复数由线束的有限直接和组成。作为应用,我们证明了贝克斯奇、埃尔马纳和史密斯猜想的一个新案例,该猜想预言了希尔伯特关于虚解析的syzygy定理的一个版本,我们还得到了皮卡等级为2的光滑投影环素上的向量束的霍罗克斯型分裂准则,扩展了艾森布德、埃尔马纳和施雷尔的一个结果。我们还应用我们的结果,在皮卡等级 2 的光滑射影环状变种的情况下,给出了奥洛夫关于派生范畴的鲁基尔维度猜想的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信