Terminal orders on arithmetic surfaces

IF 0.9 1区 数学 Q2 MATHEMATICS
Daniel Chan, Colin Ingalls
{"title":"Terminal orders on arithmetic surfaces","authors":"Daniel Chan, Colin Ingalls","doi":"10.2140/ant.2024.18.2027","DOIUrl":null,"url":null,"abstract":"<p>The local structure of terminal Brauer classes on arithmetic surfaces was classified (2021), generalising the classification on geometric surfaces (2005). Part of the interest in these classifications is that it enables the minimal model program to be applied to the noncommutative setting of orders on surfaces. We give étale local structure theorems for terminal orders on arithmetic surfaces, at least when the degree is a prime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>&gt;</mo> <mn>5</mn></math>. This generalises the structure theorem given in the geometric case. They can all be explicitly constructed as algebras of matrices over symbols. From this description one sees that such terminal orders all have global dimension two, thus generalising the fact that terminal (commutative) surfaces are smooth and hence homologically regular. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"109 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.2027","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The local structure of terminal Brauer classes on arithmetic surfaces was classified (2021), generalising the classification on geometric surfaces (2005). Part of the interest in these classifications is that it enables the minimal model program to be applied to the noncommutative setting of orders on surfaces. We give étale local structure theorems for terminal orders on arithmetic surfaces, at least when the degree is a prime p > 5. This generalises the structure theorem given in the geometric case. They can all be explicitly constructed as algebras of matrices over symbols. From this description one sees that such terminal orders all have global dimension two, thus generalising the fact that terminal (commutative) surfaces are smooth and hence homologically regular.

算术曲面上的终端阶
我们对算术曲面上终端布劳尔类的局部结构进行了分类(2021 年),这是对几何曲面分类(2005 年)的推广。这些分类的部分意义在于,它使得最小模型程序能够应用于曲面上阶的非交换性设置。我们给出了算术曲面上末端阶(至少当阶为质数 p> 5 时)的 étale 局部结构定理,这是对几何情况下给出的结构定理的推广。它们都可以明确地构造成符号矩阵的代数代数方程。从这一描述中,我们可以看到这些末端阶都具有全局维数二,从而推广了末端(交换)表面是光滑的,因而是同源规则的这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信