{"title":"Word measures on GLn(q) and free group algebras","authors":"Danielle Ernst-West, Doron Puder, Matan Seidel","doi":"10.2140/ant.2024.18.2047","DOIUrl":null,"url":null,"abstract":"<p>Fix a finite field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math> and a word <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> in a free group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle></math> on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> generators. A <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math>-random element in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math> is obtained by sampling <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> independent uniformly random elements <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub>\n<mo>∈</mo><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math> and evaluating <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. Consider <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo></math>, the average number of vectors in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msup></math> fixed by a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math>-random element. We show that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo></math> is a rational function in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></math>. If <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi>\n<mo>=</mo> <msup><mrow><mi>u</mi></mrow><mrow><mi>d</mi></mrow></msup></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi></math> a nonpower, then the limit <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><munder><mrow><mi> lim</mi><mo> <!--FUNCTION APPLICATION--> </mo></mrow><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></munder><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo></math> depends only on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> and not on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi></math>. These two phenomena generalize to all stable characters of the groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi></mrow></msub></math>. </p><p> A main feature of this work is the connection we establish between word measures on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math> and the free group algebra <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math>. A classical result of Cohn (1964) and Lewin (1969) is that every one-sided ideal of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math> is a free <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math>-module with a well-defined rank. We show that for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> a nonpower, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo>\n<mo>=</mo> <mn>2</mn>\n<mo>+</mo> <mfrac><mrow><mi>C</mi></mrow>\n<mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></mfrac>\n<mo>+</mo>\n<mi>O</mi><mrow><mo fence=\"true\" mathsize=\"1.19em\">(</mo><mrow> <mfrac><mrow><mn>1</mn></mrow>\n<mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>N</mi></mrow></msup></mrow></mfrac></mrow><mo fence=\"true\" mathsize=\"1.19em\">)</mo></mrow></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> is the number of rank-2 right ideals <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi>\n<mo>≤</mo>\n<mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math> which contain <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi>\n<mo>−</mo> <mn>1</mn></math> but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new invariant we call the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math>-primitivity rank of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math>. </p><p> In the process, we prove several new results about free group algebras. For example, we show that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> is any finite subtree of the Cayley graph of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi>\n<mo>≤</mo>\n<mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math> is a right ideal with a generating set supported on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>, then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math> admits a basis supported on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>. We also prove an analog of Kaplansky’s unit conjecture for certain <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math>-modules. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"46 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.2047","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fix a finite field of order and a word in a free group on generators. A -random element in is obtained by sampling independent uniformly random elements and evaluating . Consider , the average number of vectors in fixed by a -random element. We show that is a rational function in . If with a nonpower, then the limit depends only on and not on . These two phenomena generalize to all stable characters of the groups .
A main feature of this work is the connection we establish between word measures on and the free group algebra . A classical result of Cohn (1964) and Lewin (1969) is that every one-sided ideal of is a free -module with a well-defined rank. We show that for a nonpower, , where is the number of rank-2 right ideals which contain but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new invariant we call the -primitivity rank of .
In the process, we prove several new results about free group algebras. For example, we show that if is any finite subtree of the Cayley graph of , and is a right ideal with a generating set supported on , then admits a basis supported on . We also prove an analog of Kaplansky’s unit conjecture for certain -modules.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.