GLn(q) 上的文字度量和自由群集代数

IF 0.9 1区 数学 Q2 MATHEMATICS
Danielle Ernst-West, Doron Puder, Matan Seidel
{"title":"GLn(q) 上的文字度量和自由群集代数","authors":"Danielle Ernst-West, Doron Puder, Matan Seidel","doi":"10.2140/ant.2024.18.2047","DOIUrl":null,"url":null,"abstract":"<p>Fix a finite field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math> and a word <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> in a free group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle></math> on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> generators. A <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math>-random element in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math> is obtained by sampling <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> independent uniformly random elements <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub>\n<mo>∈</mo><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math> and evaluating <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. Consider <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo></math>, the average number of vectors in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msup></math> fixed by a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math>-random element. We show that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo></math> is a rational function in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></math>. If <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi>\n<mo>=</mo> <msup><mrow><mi>u</mi></mrow><mrow><mi>d</mi></mrow></msup></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi></math> a nonpower, then the limit <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><munder><mrow><mi> lim</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo></mrow><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></munder><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo></math> depends only on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> and not on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi></math>. These two phenomena generalize to all stable characters of the groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi></mrow></msub></math>. </p><p> A main feature of this work is the connection we establish between word measures on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math> and the free group algebra <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math>. A classical result of Cohn (1964) and Lewin (1969) is that every one-sided ideal of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math> is a free <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math>-module with a well-defined rank. We show that for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math> a nonpower, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">]</mo>\n<mo>=</mo> <mn>2</mn>\n<mo>+</mo> <mfrac><mrow><mi>C</mi></mrow>\n<mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></mfrac>\n<mo>+</mo>\n<mi>O</mi><mrow><mo fence=\"true\" mathsize=\"1.19em\">(</mo><mrow> <mfrac><mrow><mn>1</mn></mrow>\n<mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>N</mi></mrow></msup></mrow></mfrac></mrow><mo fence=\"true\" mathsize=\"1.19em\">)</mo></mrow></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi></math> is the number of rank-2 right ideals <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi>\n<mo>≤</mo>\n<mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math> which contain <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi>\n<mo>−</mo> <mn>1</mn></math> but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new invariant we call the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math>-primitivity rank of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>w</mi></math>. </p><p> In the process, we prove several new results about free group algebras. For example, we show that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> is any finite subtree of the Cayley graph of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi>\n<mo>≤</mo>\n<mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math> is a right ideal with a generating set supported on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>, then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math> admits a basis supported on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>. We also prove an analog of Kaplansky’s unit conjecture for certain <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo stretchy=\"false\">[</mo><mstyle mathvariant=\"bold-italic\"><mi>F</mi></mstyle><mo stretchy=\"false\">]</mo></math>-modules. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"46 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Word measures on GLn(q) and free group algebras\",\"authors\":\"Danielle Ernst-West, Doron Puder, Matan Seidel\",\"doi\":\"10.2140/ant.2024.18.2047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fix a finite field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi></math> of order <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>q</mi></math> and a word <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math> in a free group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle></math> on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>r</mi></math> generators. A <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math>-random element in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo></math> is obtained by sampling <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>r</mi></math> independent uniformly random elements <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub>\\n<mo>∈</mo><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo></math> and evaluating <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>. Consider <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">]</mo></math>, the average number of vectors in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msup></math> fixed by a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math>-random element. We show that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">]</mo></math> is a rational function in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></math>. If <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi>\\n<mo>=</mo> <msup><mrow><mi>u</mi></mrow><mrow><mi>d</mi></mrow></msup></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>u</mi></math> a nonpower, then the limit <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><munder><mrow><mi> lim</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo></mrow><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></munder><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">]</mo></math> depends only on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math> and not on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>u</mi></math>. These two phenomena generalize to all stable characters of the groups <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>N</mi></mrow></msub></math>. </p><p> A main feature of this work is the connection we establish between word measures on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo></math> and the free group algebra <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi><mo stretchy=\\\"false\\\">[</mo><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle><mo stretchy=\\\"false\\\">]</mo></math>. A classical result of Cohn (1964) and Lewin (1969) is that every one-sided ideal of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi><mo stretchy=\\\"false\\\">[</mo><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle><mo stretchy=\\\"false\\\">]</mo></math> is a free <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi><mo stretchy=\\\"false\\\">[</mo><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle><mo stretchy=\\\"false\\\">]</mo></math>-module with a well-defined rank. We show that for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math> a nonpower, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">𝔼</mi></mrow><mrow><mi>w</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>fix</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">]</mo>\\n<mo>=</mo> <mn>2</mn>\\n<mo>+</mo> <mfrac><mrow><mi>C</mi></mrow>\\n<mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></mfrac>\\n<mo>+</mo>\\n<mi>O</mi><mrow><mo fence=\\\"true\\\" mathsize=\\\"1.19em\\\">(</mo><mrow> <mfrac><mrow><mn>1</mn></mrow>\\n<mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>N</mi></mrow></msup></mrow></mfrac></mrow><mo fence=\\\"true\\\" mathsize=\\\"1.19em\\\">)</mo></mrow></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>C</mi></math> is the number of rank-2 right ideals <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>I</mi>\\n<mo>≤</mo>\\n<mi>K</mi><mo stretchy=\\\"false\\\">[</mo><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle><mo stretchy=\\\"false\\\">]</mo></math> which contain <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi>\\n<mo>−</mo> <mn>1</mn></math> but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new invariant we call the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>q</mi></math>-primitivity rank of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>w</mi></math>. </p><p> In the process, we prove several new results about free group algebras. For example, we show that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> is any finite subtree of the Cayley graph of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle></math>, and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>I</mi>\\n<mo>≤</mo>\\n<mi>K</mi><mo stretchy=\\\"false\\\">[</mo><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle><mo stretchy=\\\"false\\\">]</mo></math> is a right ideal with a generating set supported on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math>, then <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>I</mi></math> admits a basis supported on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math>. We also prove an analog of Kaplansky’s unit conjecture for certain <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi><mo stretchy=\\\"false\\\">[</mo><mstyle mathvariant=\\\"bold-italic\\\"><mi>F</mi></mstyle><mo stretchy=\\\"false\\\">]</mo></math>-modules. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.2047\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.2047","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

固定一个阶数为 q 的有限域 K 和一个自由群 F 中关于 r 个发电机的字 w。GL N(K)中的 w-随机元素是通过采样 r 个独立的均匀随机元素 g1,... ,gr∈ GL N(K)并求值 w(g1,...,gr)得到的。考虑𝔼w[fix ],即由 w 个随机元素固定的 KN 中向量的平均数。我们将证明𝔼w[fix ] 是 qN 中的有理函数。如果 w= ud,而 u 是非幂,那么极限 lim N→∞𝔼w[fix ] 只取决于 d 而不取决于 u。 这项工作的一个主要特点是我们在 GL N(K) 上的字计量和自由群代数 K[F] 之间建立了联系。Cohn (1964) 和 Lewin (1969) 的一个经典结果是,K[F] 的每一个单边理想都是一个自由 K[F] 模块,具有定义明确的秩。我们证明,对于非幂级数的 w,𝔼w[fix ]= 2+ CqN+O( 1q2N),其中 C 是包含 w- 1 但不作为基元的秩 2 右理想 I≤K[F] 的数目。在此过程中,我们证明了关于自由群集的几个新结果。例如,我们证明了如果 T 是 F 的 Cayley 图的任意有限子树,而 I≤K[F] 是一个右理想,其生成集支持在 T 上,那么 I 允许一个支持在 T 上的基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word measures on GLn(q) and free group algebras

Fix a finite field K of order q and a word w in a free group F on r generators. A w-random element in GL N(K) is obtained by sampling r independent uniformly random elements g1,,gr GL N(K) and evaluating w(g1,,gr). Consider 𝔼w[fix ], the average number of vectors in KN fixed by a w-random element. We show that 𝔼w[fix ] is a rational function in qN. If w = ud with u a nonpower, then the limit lim N𝔼w[fix ] depends only on d and not on u. These two phenomena generalize to all stable characters of the groups {GL N(K)}N.

A main feature of this work is the connection we establish between word measures on GL N(K) and the free group algebra K[F]. A classical result of Cohn (1964) and Lewin (1969) is that every one-sided ideal of K[F] is a free K[F]-module with a well-defined rank. We show that for w a nonpower, 𝔼w[fix ] = 2 + C qN + O( 1 q2N), where C is the number of rank-2 right ideals I K[F] which contain w 1 but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new invariant we call the q-primitivity rank of w.

In the process, we prove several new results about free group algebras. For example, we show that if T is any finite subtree of the Cayley graph of F, and I K[F] is a right ideal with a generating set supported on T, then I admits a basis supported on T. We also prove an analog of Kaplansky’s unit conjecture for certain K[F]-modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信