{"title":"Organizing principles underlying COPII-mediated transport","authors":"Julia R. Flood, Caitlin A. Mendina, Anjon Audhya","doi":"10.1016/j.ceb.2025.102492","DOIUrl":"10.1016/j.ceb.2025.102492","url":null,"abstract":"<div><div>The early secretory pathway governs the transport of thousands of secreted and transmembrane proteins and lipids from the endoplasmic reticulum (ER) to juxtaposed ER-Golgi Intermediate Compartments (ERGIC). This process is largely directed by Coat Protein complex II (COPII), which accumulates on distinct, ribosome-free ER subdomains (transitional ER) to generate highly curved transport intermediates of various sizes and shapes. The rate of secretory flux from the ER can vary significantly, depending on cell type, environmental cues, and other factors, but the mechanisms that regulate COPII-mediated trafficking have been slow to emerge. Here, we focus on recent progress that has contributed to our understanding of how the early secretory pathway is structured to facilitate the export of cargoes from the ER into a chasm approximately 300–500-nm in size, prior to fusion with ERGIC membranes without the aid of cytoskeletal elements to guide their journey.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102492"},"PeriodicalIF":6.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143576800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-dimensional signalling analysis of organoids","authors":"Aurélie Dobric, Christopher J. Tape","doi":"10.1016/j.ceb.2025.102488","DOIUrl":"10.1016/j.ceb.2025.102488","url":null,"abstract":"<div><div>Cellular phenotypes are regulated by dynamic signalling processes that involve proteins, post-translational modifications, epigenetic events, and transcriptional responses. Functional perturbation studies are required to understand cell signalling mechanisms and organoids have recently emerged as scalable biomimetic models amenable to large-scale perturbation. Here, we review the recent advances in high-dimensional analysis of cell signalling in organoids. Single-cell technologies provide cell-type specific analysis of multiple biochemical modalities, enabling a deeper understanding of the signalling mechanisms driving cell-fate dynamics. Emerging multimodal techniques are further revealing coordination between signalling layers and are poised to increase our mechanistic understanding of cell signalling.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102488"},"PeriodicalIF":6.0,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143576799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifaceted regulation of asymmetric cell division by the actin cytoskeleton","authors":"Peishan Yi , Guangshuo Ou , Wei Li","doi":"10.1016/j.ceb.2025.102491","DOIUrl":"10.1016/j.ceb.2025.102491","url":null,"abstract":"<div><div>Asymmetric cell division (ACD) is essential for generating cell diversity in multicellular eukaryotes, yet the underlying mechanisms remain largely unresolved. Well-established models of ACD, such as microtubule-based spindle displacement in <em>Caenorhabditis elegans</em> embryos and preprophase band assembly in plants provide valuable insights but fail to fully explain asymmetry establishment in others. In this article, we discuss how actin-dependent mechanisms govern ACD in model systems, highlighting emerging commonalities and differences. Given its broad impact, the actin cytoskeleton may play a more significant role in ACD than currently recognized, serving as a fundamental component during organismal development across kingdoms.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102491"},"PeriodicalIF":6.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143561958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aneuploidy as a cancer vulnerability","authors":"Jinghui Cao , Cai Liang , Hongtao Yu","doi":"10.1016/j.ceb.2025.102490","DOIUrl":"10.1016/j.ceb.2025.102490","url":null,"abstract":"<div><div>Aneuploidy is prevalent in cancer and has complicated roles in tumorigenesis. Paradoxically, artificially engineered aneuploidy in normal cells reduces cellular fitness by inducing proteotoxic and genotoxic stresses. A better molecular understanding of the multifaceted roles of aneuploidy in cancer evolution offers promising avenues for future cancer therapies. Here, we discuss the patterns and consequences of aneuploidy in human cancer. We highlight recent efforts to explore aneuploidy as a cancer vulnerability and new interventions that exploit this vulnerability for cancer treatment.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102490"},"PeriodicalIF":6.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143561959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S0955-0674(25)00038-9","DOIUrl":"10.1016/S0955-0674(25)00038-9","url":null,"abstract":"","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"93 ","pages":"Article 102500"},"PeriodicalIF":6.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The functional organisation of the centromere and kinetochore during meiosis","authors":"Lori B. Koch, Adele L. Marston","doi":"10.1016/j.ceb.2025.102486","DOIUrl":"10.1016/j.ceb.2025.102486","url":null,"abstract":"<div><div>Meiosis generates gametes through a specialised cell cycle that reduces the genome by half. Homologous chromosomes are segregated in meiosis I and sister chromatids are segregated in meiosis II. Centromeres and kinetochores play central roles in instructing this specialised chromosome segregation pattern. Accordingly, kinetochores acquire meiosis-specific modifications. Here we contextualise recent highlights in our understanding of how centromeres and kinetochores direct the sorting of chromosomes into gametes via meiosis.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102486"},"PeriodicalIF":6.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Amitrano , Debanik Choudhury , Konstantinos Konstantopoulos
{"title":"Navigating confinement: Mechanotransduction and metabolic adaptation","authors":"Alice Amitrano , Debanik Choudhury , Konstantinos Konstantopoulos","doi":"10.1016/j.ceb.2025.102487","DOIUrl":"10.1016/j.ceb.2025.102487","url":null,"abstract":"<div><div>Cell migration through confined spaces is a critical process influenced by the complex three-dimensional (3D) architecture of the local microenvironment and the surrounding extracellular matrix (ECM). Cells <em>in vivo</em> experience diverse fluidic signals, such as extracellular fluid viscosity, hydraulic resistance, and shear forces, as well as solid cues, like ECM stiffness and viscoelasticity. These fluidic and solid stressors activate mechanotransduction processes and regulate cell migration. They also drive metabolic reprogramming, dynamically altering glycolysis and oxidative phosphorylation to meet the cell's energy demands in different microenvironments. This review discusses recent advances on the mechanisms of cell migration in confinement and how confinement-induced cellular behavior leads to metabolic reprogramming.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102487"},"PeriodicalIF":6.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Centrosome biogenesis and maintenance in homeostasis and disease","authors":"Camila Fernandes-Mariano , Joana N. Bugalhão , Diana Santos , Mónica Bettencourt-Dias","doi":"10.1016/j.ceb.2025.102485","DOIUrl":"10.1016/j.ceb.2025.102485","url":null,"abstract":"<div><div>Recent technological advances in proteomics and microscopy techniques, such as cryo-electron microscopy (cryoEM) and expansion microscopy (ExM), have enhanced our understanding of centrosome structure, biogenesis, and regulation. Here we discuss new insights into centrosome structure, highlight new regulatory mechanisms in centrosome biogenesis, and explore emerging concepts in centrosome maintenance and plasticity across different contexts. Furthermore, we review how centrosome biogenesis and homeostasis are dysregulated in various pathological conditions. We finalise by outlining outstanding questions in the field, how the mechanisms discussed are regulated across multiple contexts, the balance between centriole stability and plasticity, and the therapeutic potential of targeting centrosome dysfunction in disease.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102485"},"PeriodicalIF":6.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda Bentley-DeSousa , Devin Clegg , Shawn M. Ferguson
{"title":"LRRK2, lysosome damage, and Parkinson's disease","authors":"Amanda Bentley-DeSousa , Devin Clegg , Shawn M. Ferguson","doi":"10.1016/j.ceb.2025.102482","DOIUrl":"10.1016/j.ceb.2025.102482","url":null,"abstract":"<div><div>Limited understanding of regulatory mechanisms controlling LRRK2 kinase activity has hindered insights into both its normal biology and how its dysregulation contributes to Parkinson's disease. Fortunately, recent years have yielded an increased understanding of how LRRK2 kinase activity is dynamically regulated by recruitment to endolysosomal membranes. Notably, multiple small GTPases from the Rab family act as both activators and substrates of LRRK2. Additionally, it was recently discovered that LRRK2 is recruited to, and activated at, stressed or damaged lysosomes through an interaction with GABARAP via the CASM (conjugation of ATG8 to single membranes) pathway. These discoveries position LRRK2 within the rapidly growing field of lysosomal damage and repair mechanisms, offering important insights into lysosome biology and the pathogenesis of Parkinson's disease.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"93 ","pages":"Article 102482"},"PeriodicalIF":6.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}